Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век
- Название:Игра разума. Как Клод Шеннон изобрел информационный век
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция
- Год:2018
- Город:Москва
- ISBN:978-5-04-091453-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век краткое содержание
Игра разума. Как Клод Шеннон изобрел информационный век - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ганнибал Форд не был первым, кто задумался о подобной машине, но именно его изобретение одним из первых смогло надежно находить интегралы. Если не считать того, что тряска на корабле во время шторма или от разрывов летящих снарядов могла привести к тому, что шаровая опора соскальзывала с орбиты, и тогда вся команда возвращалась в те дни, когда на выручку приходила подзорная труба и интуиция. «Это было, – сказал Вэнивар Буш, – чудо точности и завершенности». Вскоре Буш будет работать одновременно с шестью такими машинами. Но он станет использовать их не для нахождения угла наклона орудий, а для определения форм атомов и структур небесных тел.
Волновой анализатор Томсона, интегратор Форда и измеритель рельефа Буша – задуманные по отдельности друг от друга и для решения одной специфической задачи, эти машины объединяло одно ключевое свойство. Все они были работающими моделями физического мира – склона холма или падающего снаряда, – упрощенными до самой сути. Все они являлись в некотором смысле примитивными миниатюрами тех процессов, которые описывали. Другими словами, они были явными аналогами. Но только Вэнивар Буш сумел довести эту технологию до высочайшего уровня, создав аналоговый компьютер, универсальную машину, максимально соединившую в себе инструмент и мозг. И именно Клод Шеннон по гениальному стечению обстоятельств помог сделать его неактуальным.
Впоследствии Буш признал своих предшественников в создании компьютера в лице Томсона и Форда. Но когда в середине 1920-х годов он впервые приступил к работе по поиску способа ужать электросеть Америки до размеров его лаборатории, он и не догадывался о прародителях своего аналогового компьютера. С чего же он начал?
В определенном смысле он начинал с преподавания. Будучи уже изобретателем, Буш руководил молодыми инженерами в то время, когда факультет инженерного дела начал приобретать известность в масштабах страны. Попав в Кембридж, штат Массачусетс, он преподавал в аудитории, полной талантливых первокурсников в отутюженных брюках и с гладко зачесанными волосами, которые сидели ошеломленные, пока Буш уничтожал их чувство собственного достоинства. Он мог встать за кафедрой, поднять обыкновенный трубный ключ и предложить простую задачу: «Опишите этот предмет».
Первокурсники, один за другим, по очереди получали свою порцию критики, и одно за другим каждое описание разбиралось на части: Буш демонстрировал, насколько каждое описание обтекаемо, так что его можно отнести к любому виду гаечных ключей, но не к этому ключу на столе. А заканчивал он прочтением точной и правильной заявки на выдачу патента:
«Поворачивая муфту вправо или влево, прямая губка может сдвигаться либо ближе, либо дальше от фиксирующей губки, в зависимости от необходимости. Внутренняя грань прямой губки выполнена под прямым углом к ее стержню и также снабжена рядом зубцов, которые захватывают фиксирующую губку… Прямая губка может выдвигаться вперед, так что она располагается под наклоном к фиксирующей губке, чтобы ключ мог легко охватить трубу».
И так далее. Смысл был в соблюдении точности. Целью Буша было заставить студентов пройти испытание, научившись описывать реальный мир (трубный ключ) столь точными терминами (заявка на патент), чтобы их можно было безошибочно понять. Дано: трубный ключ. Найди слова только для этого ключа, и ни для какого другого. Дано: слова. Распознай ключ. Это, учил Буш своих студентов, было началом инженерной науки.
Буш уничтожал их чувство собственного достоинства. Он мог встать за кафедрой, поднять обыкновенный трубный ключ и предложить простую задачу: «Опишите этот предмет».
По той же самой причине – испытание в символизации мира – каждого инженера учили чертить. Оставьте чистые цифры для математиков: инженеры учатся математике, работая руками. «Человек учится использовать вычисления так же, как он учится пользоваться стамеской или напильником», – сказал в начале столетия один реформатор, который помог придать инженерному образованию практическую направленность. Математическая лаборатория того времени была «хорошо укомплектована глиной, картоном, проволокой, деревянными, металлическими и другими моделями и материалами», а также бумажной лентой, которая, наверное, была стара как Буш. В Бушевском МТИ математические и инженерные классы становились мастерскими по работе с металлом и деревом, а студенты, которые умели пользоваться планиметром и логарифмической линейкой, также должны были научиться паять и пилить. Здесь, возможно, скрыт источник постоянного беспокойства инженеров, «всегда испытывающих неуверенность там, где они приноравливаются», как выразился великий критик Пол Фасселл, «к начальнику или рабочему, процессу управления или производства, миру умственной работы или миру ручного труда». Но всегда существовало убеждение, что ручной труд – это и есть умственная работа, если только переводы сохранили точность высказывания. При условии соблюдения точности уравнение можно понять и решить в виде картинок и движения. Так же, как гаечный ключ можно описать правильными словами. Работая с механическими устройствами в процессе создания своих первых аналоговых компьютеров, Буш обнаружил, насколько глубоко постигаются принципы вычисления, если работаешь руками. «Он учился вычислению с помощью языка механики, – объяснял Буш, – странный подход, но ему он был понятен. То есть он понимал его не в каком-то формальном смысле; он понимал саму суть; чувствовал это каким-то внутренним чутьем».
Эти жужжащие интеграторы и проворачивающиеся шестеренки машин Буша воплощали собой сам процесс вычисления. Подобно хорошим инженерам, они принимали чертежи в виде вводных данных и выдавали их в виде данных на выходе. Они могли появиться в любом месте, но нет ничего удивительного в том, что собрали эти машины на факультете инженерного дела.
К 1924 году Буш и его студенты построили интегрирующую машину, которая по своим характеристикам превосходила машину Форда. К 1928 году в процессе поиска надежной вычислительной системы им удалось смоделировать 320 километров линий электропередач в помещении лаборатории площадью пятнадцать квадратных футов. В тот же год началась работа по созданию универсального аналогового компьютера: дифференциального анализатора.
«Это была устрашающая штуковина с валиками, шестеренками, ремнями и колесиками, вращающимися на дисках…»
По завершении – на это ушло три года и 25 000 долларов – получился мозг размером с комнату, металлическая вычислительная машина, которая могла жужжать своими шестеренками, решая задачу дни и ночи напролет, пока не застопорится. На решение одной задачи – определить степень влияния космических лучей на магнитное поле земли – ушло тридцать недель. Но когда все было завершено, дифференциальный анализатор с помощью своей грубой силы решил уравнения столь сложные, что человеку браться за них было бессмысленно. Теперь лаборатория Буша имела в своем распоряжении вычислительный прибор, способный переходить от решения проблем промышленного масштаба к некоторым фундаментальным вопросам физики.
Читать дальшеИнтервал:
Закладка: