Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век

Тут можно читать онлайн Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век - бесплатно ознакомительный отрывок. Жанр: foreign_publicism, издательство Литагент 5 редакция, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Игра разума. Как Клод Шеннон изобрел информационный век
  • Автор:
  • Жанр:
  • Издательство:
    Литагент 5 редакция
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-04-091453-1
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век краткое содержание

Игра разума. Как Клод Шеннон изобрел информационный век - описание и краткое содержание, автор Джимми Сони, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человек, совершивший прорыв в математике и схемотехнике, наделив машины математической логикой. Гений, сделавший свое самое важное открытие в 21 год. Дальний родственник Томаса Эдисона. Коллега Алана Тьюринга, работавший с ним в годы Второй мировой войны над секретными правительственными проектами. Человек, до конца своих дней остававшийся изобретателем-самоучкой. И все это – Клод Шеннон, один из величайших ученых умов XX столетия. Именно благодаря ему безликие потоки электронов, путешествующих по проводам, получили название «Информация» и обзавелись собственными единицами измерения – битами и байтами.

Игра разума. Как Клод Шеннон изобрел информационный век - читать онлайн бесплатно ознакомительный отрывок

Игра разума. Как Клод Шеннон изобрел информационный век - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джимми Сони
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Скажем, нам нужно определить всех голубоглазых левшей, живущих в Лондоне. Обозначим свойство «голубые глаза» величиной х, а свойство «левша» – у. Пусть функцию умножение обозначает И, сложение – ИЛИ, а простой апостроф (заменяющий знак минус) – НЕТ. Помните, что цель всего этого – доказать верность или неверность утверждения. Поэтому пусть 1 означает «верно», а 0 – «неверно». Все это начальные знания для превращения логики в математику.

Таким образом, группа всех лондонцев, которые одновременно голубоглазы и левши, становится просто ху. А группа всех лондонцев, которые либо голубоглазы, либо левши, это х + у. Теперь представьте, что мы хотим оценить истинность утверждения «этот конкретный житель Лондона голубоглаз и левша». Его верность зависит от верности х и у. И здесь Буль выдвигает принципы для оценки утверждения 1 или 0, учитывая то, что мы знаем о х и у:

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

Эти уравнения легко перевести обратно на обычный язык. Если житель Лондона не является ни голубоглазым, ни левшой, то утверждение, которое мы пытаемся оценить, конечно, неверно. Если лондонец только голубоглаз или только левша, утверждение снова неверно. Если лондонец и голубоглаз, и левша, вот тогда утверждение становится верным. Другими словами, знак операции «И» дает «верно», только если все положения, которыми он оперирует, верны.

Но булева алгебра – это больше, чем просто переделка на новый лад обычной математики. Представьте теперь, что мы хотим оценить утверждение «этот конкретный житель Лондона голубоглаз или левша». В этом случае мы получаем следующее:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

Если лондонец ни голубоглаз, ни левша, утверждение неверное. Но если он голубоглаз или левша, или и то и другое вместе, оно верное. Вот поэтому в булевой алгебре 1 + 1 равняется 1. Знак операции ИЛИ дает верный ответ, если какое-то из положений, которыми он оперирует, верно, или все положения верны. (Буль также различал еще один вид «или», названный «исключительным или», который дает верный ответ, только если одно или другое положение верно, но не оба.)

Из этих простых элементов (столь же простых, как переключатели, размышлял Шеннон) мы можем составлять другие уравнения и добиваться все более сложных результатов. К примеру, мы можем доказать, что х + ху = х, или что верность утверждения «либо х, либо одновременно х и у» зависит исключительно от верности х. Или же мы можем доказать, что (х + у)’ = х’у’: другими словами, «х или у» неверно, когда «оба не х и не у», и наоборот. Все это, утверждал Буль, законы логики. Переменные х и у, как и любые другие переменные, могут означать произвольные утверждения при условии, что они либо истинны, либо ложны. И с помощью простого, почти не требующего напряжения ума применения нескольких правил, мы можем делать заключения из всего, что подлежит дедукции. Механическая логика означала, что больше не нужно ломать голову над фразой: «Все люди смертны, Сократ – это человек…» – и так далее, только символы, операции и правила. Гений сформулировал правила, которые мог применить даже ребенок. Или что-то, мыслящее проще, чем ребенок.

Все это было весьма интересно, но на протяжении почти столетия из всего этого мало что вышло практического. Нескольким поколениям студентов, в том числе Клоду Шеннону эта тема преподносилась как забавный философский феномен. В то время, вспоминал он, его в основном забавлял звук слова: «Бу-у-у-улева». Но какие-то крупицы этих знаний остались у него, когда он пытался разобраться в коробке со ста переключателями. Он чувствовал некую простоту правил Буля, присутствующую даже в самых чертовски сложных уравнениях, которые он решал для Буша. Замкнуть, разомкнуть. Да, нет. 1, 0. Что-то из этих знаний осталось с ним, когда он в 1937 году покинул МТИ, уехав на лето в Нью-Йорк. Другой уникальной группой людей, подошедших к сопоставлению логики с электрическими цепями достаточно близко, были умы из «Лабораторий Белла», взявшие к себе Шеннона на летнюю стажировку. Будучи временно нанятым сотрудником, Шеннон, вероятно, занимался самыми рядовыми делами, связанными с промежуточной помощью, и его присутствие в «Лабораториях» летом 1937 года не было отмечено в истории заведения, но именно здесь он смог поделиться своим глубоким пониманием математической логики и продвинутым знанием электрических схем, а еще настойчивым ощущением, что эти две сферы взаимосвязаны. Более того, он передал свои знания прямо в сердце телефонной компании, владевшей самой сложной и протяженной электросетью в стране. И его работа была частью математических попыток заставить эту сеть работать эффективнее и дешевле.

Самое важное – примерно в это время он впервые взялся записывать свои мысли и начал связывать вместе то сходство, которое, по его мнению, было в анализаторе Томсона, сетях «Лабораторий Белла» и логике Буля. Спустя полвека Шеннон попытался вспомнить тот момент прозрения и объяснить, как ему удалось первым понять, что означали эти переключатели. Вот что он рассказывал журналисту:

«Дело не в том, что что-торазмыкаетсяили “замыкается”, или в словах “да” или “нет”, о которых вы говорите. Смысл заключается в том, что две вещи в одной последовательности в логике описываются словом “и”, поэтому вы говорите: это “и” это. В то время как две вещи в параллели описываются словом “или”… Есть контакты, которые замыкаются, когда вы оперируете реле, а есть другие контакты, которые размыкаются, и поэтому слово “нет” относится к этому аспекту реле… Люди, которые занимались релейными цепями, конечно, понимали, как делать эти вещи. Но у них не было математического аппарата булевой алгебры».

Скачок от логики к символам, а затем к схемам: «Мне кажется, что это было самое увлекательное занятие в моей жизни», – вспоминал Шеннон с теплотой эти времена.

Любое понятие из булевой алгебры имело свой физический эквивалент в электрической цепи. Перевод переключателя в положение «включено» мог означать «верно», а перевод в положение «выключено» – «неверно». И все в целом можно было представить в последовательности символов 0 и 1. Но еще более важно, как указывал Шеннон, что логические знаки операции системы Буля – И, ИЛИ, НЕТ – могли быть в точности воспроизведены в виде цепей. И тогда последовательное соединение становится И, потому что ток должен проходить последовательно через два реле, и он не дойдет до своей цели, если оба реле не обеспечат ему этот проход. Параллельное соединение становится ИЛИ, потому что ток может проходить по любому из этих реле или по обоим сразу. Ток проходит по двум замкнутым реле при параллельном соединении и зажигает свет: 1 + 1 = 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джимми Сони читать все книги автора по порядку

Джимми Сони - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Игра разума. Как Клод Шеннон изобрел информационный век отзывы


Отзывы читателей о книге Игра разума. Как Клод Шеннон изобрел информационный век, автор: Джимми Сони. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x