Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век

Тут можно читать онлайн Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век - бесплатно ознакомительный отрывок. Жанр: foreign_publicism, издательство Литагент 5 редакция, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век
  • Название:
    Игра разума. Как Клод Шеннон изобрел информационный век
  • Автор:
  • Жанр:
  • Издательство:
    Литагент 5 редакция
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-04-091453-1
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Джимми Сони - Игра разума. Как Клод Шеннон изобрел информационный век краткое содержание

Игра разума. Как Клод Шеннон изобрел информационный век - описание и краткое содержание, автор Джимми Сони, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человек, совершивший прорыв в математике и схемотехнике, наделив машины математической логикой. Гений, сделавший свое самое важное открытие в 21 год. Дальний родственник Томаса Эдисона. Коллега Алана Тьюринга, работавший с ним в годы Второй мировой войны над секретными правительственными проектами. Человек, до конца своих дней остававшийся изобретателем-самоучкой. И все это – Клод Шеннон, один из величайших ученых умов XX столетия. Именно благодаря ему безликие потоки электронов, путешествующих по проводам, получили название «Информация» и обзавелись собственными единицами измерения – битами и байтами.

Игра разума. Как Клод Шеннон изобрел информационный век - читать онлайн бесплатно ознакомительный отрывок

Игра разума. Как Клод Шеннон изобрел информационный век - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джимми Сони
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Скачок от логики к символам, а затем к схемам: «Мне кажется, что это было самое увлекательное занятие в моей жизни», – вспоминал Шеннон с теплотой эти времена. Странное и немного педантичное представление об увлекательности. Но это был молодой человек, всего двадцати одного года, пришедший в трепет от мысли о том, что, заглянув в коробку с переключателями и реле, он увидел там то, что никто до него не видел. Все, что нам осталось, это детали. В последующие годы все будет происходить так, словно он забыл, что публикация научных трудов – это то, чего всегда ждут от блестящих ученых. Он станет бесцельно копить свои феноменальные исследования годами, а в итоге окажется в доме с чердаком, заваленным бумагами, полузаконченными статьями и «хорошими вопросами» на миллиметровой бумаге. Но сейчас, полный честолюбивых замыслов и целей, он едва успевал выдавать новые идеи.

Завершив осенью 1937 года свою магистерскую диссертацию «Символический анализ релейных и переключательных схем», Шеннон представил ее на суд аудитории в Вашингтоне и опубликовал на следующий год, заложив основы для блестящей карьеры. Теперь уже в новой для себя манере Шеннон писал сухим научным языком:

«Любая схема представлена рядом уравнений, условия уравнений соответствуют разнообразным реле и переключателям схемы. Вычисление разрабатывается для того, чтобы этими уравнениями управляли простые математические процессы, большая часть которых напоминает обычные алгебраические алгоритмы. Это вычисление должно быть совершенно аналогично вычислению положений, применяемых при изучении символической логики… Схема, таким образом, может быть мгновенно срисована с уравнений».

И это был ключевой момент: после Шеннона собирание схем перестало быть упражнением в интуиции и перешло в область знаний правил уравнений и сокращений. Рассмотрим проблему, с которой могли столкнуться коллеги Шеннона, когда пытались подвергнуть свою гигантскую аналоговую машину электрическому регулированию. Допустим, определенная функция в схеме позволила бы току проходить – будет выдавать «1» в терминологии Шеннона – в зависимости от положения трех различных переключателей, х, у и z. Ток будет проходить, если только z будет включен, или если только у и z будут включены, или если х и z будут включены, или если х и у будут включены, или если все три будут включены. Методом проб и ошибок коллеги Шеннона могли бы рано или поздно смонтировать одиннадцать отдельных соединений, которые бы сделали работу. Но Шеннон начал с того, что взялся за карандаш и свой вездесущий блокнот. Он выписал уравнение, используя обозначения Буля:

x’y’z + x’yz + xy’z +xyz’ + xyz

Затем он ужал их. Два члена этого уравнения представлены yz, а два – y’z, так что он просто вынес их за скобки, как в любой задаче по алгебре:

yz(x + х’) + y’z (х + х’) + xyz’

Но булева логика говорит нам, что х + х’ всегда верно, и в этом есть смысл: х либо верно, либо нет. Тогда Шеннон, возможно, осознал, что х + х’ не скажет ему ничего интересного о выходе цепи, а значит, все это можно вычеркнуть:

yz + y’z + xyz’

Теперь два члена означали z, и Шеннон могужать их снова: z(y +у’) + xyz’

И потой же самой причине, что и раньше, он мог вычеркнуть члены в следующем уравнении:

z + xyz’

В логике Буля было еще одно правило, позволявшее фильтровать еще дальше. Буль показал, что х + х’у = х + у, или если говорить простым языком, то спрашивать о лондонце, который был либо голубоглазым, либо левшой, но не голубоглазым, было все равно, что спрашивать о лондонце, который был либо голубоглазым, либо левшой. Применяя это правило к приведенной выше функции, Шеннон мог вычеркнуть z’, как дублирующий элемент, оставив следующее:

z + xy

Вспомните тот лишний мусор, с которого Шеннон начинал. Его расчеты смогли доказать, что эти два ряда инструкций абсолютно одинаковы:

Включать, если только включен z, или если включены у и z, или если включены x и z, или если включены х и у, или если включены все три.

Включать, если включен z, или если включены х и у.

Другими словами, он обнаружил способ выполнить работу с одиннадцатью соединениями с помощью всего двух, параллельного и последовательного. И он сделал это, даже не дотронувшись до переключателя.

Вооруженный этим пониманием, далее в своей диссертации он лишь демонстрировал возможности нового подхода. Калькулятор двоичных чисел; замок с комбинацией из пяти кнопок и электронной сигнализацией – как только уравнения были выведены, они сразу же заработали. Построение электрической схемы впервые стало наукой, а превращение ремесла в науку станет фирменной чертой работы Шеннона.

А вот еще одно достоинство этой системы: как только переключатели превращаются в символы, они уже не имеют значения. Система способна работать в любой среде, от громыхающих переключателей до микроскопических рядов молекул. Единственное, что требовалось, это «логические» ворота, способные выразить «да» и «нет», и этими воротами могло быть что угодно. Правила того, как облегчить работу механического компьютера размером с комнату, те же самые, которые будут впоследствии учтены при создании схем электровакуумных ламп, транзисторов, микросхем – на каждом этапе присутствует бинарная логика из 0 и 1.

Все было элементарно, отмечал Шеннон. Но это открытие можно было назвать простым лишь после того, как оно было сделано.

И все же – «возможно, самая важная, а также самая известная магистерская диссертация века?» «Одна из величайших магистерских работ за всю историю?» «Самая важная магистерская работа за все время?» «Монументальная?» Был ли ряд приемов, экономящих время инженерам, действительно достойных такой похвалы? Если работа выполнялась в любом случае, было ли так важно, что Шеннон проделывал за два этапа то, что его коллеги выполняли за одиннадцать?

Все было элементарно, отмечал Шеннон.

Но это открытие можно было назвать простым лишь после того, как оно было сделано.

Да, это было важно. Но главный, фундаментальный результат научной работы Шеннона в основном подразумевался, но не назывался. Ее значение стало понятно лишь со временем. Скрытый смысл станет яснее, если мы поймем, что Шеннон, следом за Булем, использовал знак равенства, как условный: «если».

1+1=1: если ток проходит через два переключателя параллельно, свет загорается (или реле приобретает сигнальное значение «да»). 0+0=0: если ток не проходит ни через один из переключателей в параллельном соединении, свет не загорается (или реле приобретает сигнальное значение «нет»). В зависимости от ввода, одни и те же переключатели могут давать два разных ответа. Давайте совершим антропоморфический прыжок: электросхема может сама принимать решения. Схема способна действовать логично. Многие схемы могли выполнять невероятно сложные логические операции: они могли решать логические задачи и выводить заключения на основании исходных данных, причем так же надежно, как человек, но быстрее. Благодаря тому, что Буль показал, как разложить логику на последовательность бинарных верных-неверных решений, любая система, способная представлять двоичность, получила доступ ко всей логической вселенной, которую он описал. «Законы мышления» распространялись и на неживой мир.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джимми Сони читать все книги автора по порядку

Джимми Сони - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Игра разума. Как Клод Шеннон изобрел информационный век отзывы


Отзывы читателей о книге Игра разума. Как Клод Шеннон изобрел информационный век, автор: Джимми Сони. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x