Яков Перельман - Головоломки. Задачи. Фокусы. Развлечения

Тут можно читать онлайн Яков Перельман - Головоломки. Задачи. Фокусы. Развлечения - бесплатно ознакомительный отрывок. Жанр: Развлечения, издательство АСТ, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Головоломки. Задачи. Фокусы. Развлечения
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-088663-0
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Яков Перельман - Головоломки. Задачи. Фокусы. Развлечения краткое содержание

Головоломки. Задачи. Фокусы. Развлечения - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.
Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.

Головоломки. Задачи. Фокусы. Развлечения - читать онлайн бесплатно ознакомительный отрывок

Головоломки. Задачи. Фокусы. Развлечения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Четырьмя четверками 68 Который год 69 Будет только один такой год в XX - фото 92
Четырьмя четверками (68)
Который год 69 Будет только один такой год в XX веке 1961й В зеркале - фото 93
Который год? (69)

Будет только один такой год в XX веке: 1961-й.

В зеркале (70)

Единственные цифры, которые не искажаются в зеркале, — это 1, 0 и 8. Значит, искомый год может содержать в себе только такие цифры. Кроме того, мы знаем, что это один из годов XIX века, т. е. что первые его две цифры 18.

Легко сообразить теперь, какой это год: 1818-й. В зеркале 1818 год превратится в 8181-й: это ровно в 4 1/ 2раза больше, чем 1818:

1818 × 4 1/ 2= 8181.

Других решений задача не имеет.

Какие числа? (71)

Ответ прост: 1 и 7. Других таких чисел нет.

Сложить и перемножить (72)

Таких чисел сколько угодно:

3 × 1 = 3,

3 + 1 = 4,

10 × 1 = 10,

10 + 1 = 11,

и вообще всякая пара целых чисел, из которых одно — единица.

Это потому, что от прибавления единицы число увеличивается, а от умножения на единицу остается без перемены.

Столько же (73)

Числа эти 2 и 2. Других целых чисел с такими свойствами нет.

Три числа (74)

1, 2 и 3 дают при перемножении и при сложении одно и то же:

1 + 2 + 3 = 6; 1 × 2 × 3 = 6.

Умножение и деление (76)

Таких чисел очень много. Например:

2: 1 = 2;

2 × 1 = 2;

7: 1 = 7;

7 × 1 = 7;

43: 1 = 43;

43 × 1 = 43.

Вдесятеро больше (76)

Вот еще четыре пары таких чисел:

11 и 110; 14 и 35; 15 и 30; 20 и 20.

В самом деле:

11 × 110 = 1210;

15 × 30 = 450;

11 + 110 = 121;

15 + 30 = 45;

14 × 35 = 490;

20 × 20 = 400;

14 + 35 = 49;

20 + 20 = 40.

Других решений задача не имеет. Довольно хлопотливо разыскивать решения вслепую. Знание начатков алгебры значительно облегчает дело и дает возможность не только отыскать все решения, но и удостовериться, что больше пяти решений задача не имеет.

На что он множил? (77)

Рассуждаем так. Цифра 6 получилась от сложения колонки из двух цифр, из которых нижняя может быть либо 0, либо 5. Но если нижняя 0, то верхняя 6. А может ли верхняя цифра быть 6? Пробуем: оказывается, чему бы ни равнялась вторая цифра множителя, никак не получается 6 на предпоследнем месте первого частного произведения. Значит, нижняя цифра предпоследней колонки должна быть 5; тогда над ней стоит 1.

Теперь легко восстановить часть стертых цифр:

Последняя цифра множителя должна быть больше 4 иначе первое частное - фото 94

Последняя цифра множителя должна быть больше 4, иначе первое частное произведение не будет состоять из четырех цифр. Это не может быть цифра 5 (не получается 1 на предпоследнем мосте). Пробуем 6 — годится. Имеем:

Рассуждая далее подобным же образом находим что множитель 96 Сестры и - фото 95

Рассуждая далее подобным же образом, находим, что множитель — 96.

Сестры и братья (78)

Всех семеро: четыре брата и три сестры. У каждого брата три брата и три сестры; у каждой сестры четыре брата и две сестры.

Сколько детей? (79)

Всех детей семь: шесть сыновей и одна дочь. (Обычно же отвечают, что детей двенадцать; но тогда у каждого сына было бы шесть сестер, а не одна.)

Завтрак (80)

Дело объясняется очень просто. Село за стол не четверо, а только трое: дед, его сын и внук. Дед и сын — отцы, а сын и внук — сыновья.

Сколько им лет? (81)

Рассчитать, сколько лет каждому, нетрудно. Ясно, что сын старше внука в 7 раз, а дед в 12 раз. Если бы внуку был 1 год, сыну было бы 7 лет, деду — 12 лет, а всем троим вместе 20 лет. Это ровно в 5 раз меньше, чем на самом деле. Значит, в действительности внуку 5 лет, сыну 35 и деду 60.

Проверим: 5+ 35 + 60 = 100.

Землекопы (82)

На удочку этой задачи легко попасться: можно думать, что если 5 землекопов в 5 часов вырыли 5 метров канавы, то для выкопки в 100 часов 100 метров понадобится 100 человек. Однако, это совершенно неправильное рассуждение: понадобятся те же 5 землекопов, не больше.

В самом деле: 5 землекопов в 5 часов выкапывают 5 метров; значит, 5 землекопов в 1 час вырыли бы 1 метр, а в 100 часов — 100 метров.

Сколько партий? (83)

Обычно отвечают, что каждый играл по одному разу, не соображая, что трое (и вообще нечетное число) игроков никак не могут играть каждый только по одному разу: с кем же тогда играл третий игрок? В каждой партии должно ведь участвовать два партнера. Если играли А, В и С и сыграно было три партии, то это значит, что играли

А с В ,

А с С,

В с С .

Легко видеть, что каждый играл не по одному разу, а по два:

А играл с В и с С ,

В «с А и с С ,

С «с А и с В.

Итак, правильный ответ на головоломку таков: каждый из троих играл по два раза, хотя сыграно было всего три партии.

Кто старше? (84)

Ни тот, ни другая не старше: они близнецы, и каждому из них в данное время по 6 лет.

Возраст находят простым расчетом: через два года мальчик будет на 4 года старше, чем два года назад, и притом вдвое старше; значит, 4 года — это возраст его два года назад, и, следовательно, сейчас ему 4 + 2 = 6 лет.

Таков же и возраст девочки.

Улитка (85)

Через 10 суток и 1 день. В первые 10 суток улитка поднимется на 10 метров, по 1 метру в сутки; в течение же одного следующего дня она всползет еще на 5 метров, т. е. достигнет верхушки дерева. (Обыкновенно неправильно отвечают: «Через 15 суток».)

Пильщики дров (86)

Часто отвечают: в 1 1/ 2× 5, т. е. в 7 1/ 2минут. При этом забывают, что последний разрез даст два метровых отрубка. Значит, распиливать 5-метровое бревно поперек придется не 5, а 4 раза; на это уйдет всего l 1/ 2 × 4 = 6 минут.

В город (87)

Колхозник ничего не выгадал, а потерял. На вторую половину дороги он употребил столько времени, сколько отняло бы у него все путешествие в город пешком. Значит, он выгадать во времени не может, а должен потерять.

Потерял он 1/ 5того времени, какое нужно, чтобы пройти пешком половину дороги.

В колхоз (88)

Решение этой задачи ясно из следующих выкладок:

24 км в гору и 8 км под гору — 4 ч. 30 м.

8 км в гору и 24 км под гору — 2 ч. 50 м.

Умножив вторую строку на 3, имеем:

24 км в гору и 8 км под гору — 4 ч. 30 м.

24 км в гору и 72 км под гору — 8 ч. 30 м.

Отсюда ясно, что 72 без 8, т. е. 64 километра под гору велосипедист проезжает в 8 ч. 30 м. без 4 ч. 30 м., т. е. в 4 ч. Следовательно, в час он проезжал под гору 64: 4 = 16 километров.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Головоломки. Задачи. Фокусы. Развлечения отзывы


Отзывы читателей о книге Головоломки. Задачи. Фокусы. Развлечения, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x