Алексей Москалев - Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия
- Название:Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия
- Автор:
- Жанр:
- Издательство:Издательство «Э»
- Год:2016
- Город:Москва
- ISBN:978-5-699-85202-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Москалев - Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия краткое содержание
● Как определить признаки ускоренного старения и что нужно сделать, чтобы их устранить? Как вовремя распознать появление возрастзависимых заболеваний?
● Как правильно питаться, чтобы замедлить скорость старения организма?
● Какие витамины и микроэлементы нужны для продления молодости?
● Какой режим отдыха и активности способствует долголетию?
Ответы на все эти и многие другие вопросы вы найдете в предлагаемой вашему вниманию книге.
Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Интересно отметить, что, хотя на ДНК различных живых организмов, будь то вирус, бактерия, ель, мышь или человек, размещаются разные «сообщения» – гены, все они записаны с использованием одного и того же генетического кода – у всех организмов каждому триплету (последовательности из трех «букв») на ДНК соответствует одна и та же аминокислота в образовавшемся белке. По этой причине мы можем методами генной инженерии заставить работать в клетке кишечной палочки или дрожжей любой ген, скажем, человека или пшеницы.
Очень важное понятие, которое часто встретится вам на страницах книги, – это транскриптом. Транскриптом – это просто совокупность всех матричных РНК данной клетки или организма, проще говоря – полное собрание всех используемых в данный момент в работе клетки инструкций. По изменению транскриптома можно судить о том, какие гены и насколько активны, то есть преобразуются в функциональный продукт – белок.
Как уже говорилось, дезоксирибонуклеиновая кислота( ДНК) – носитель наследственной информации о функциях всех клеток нашего тела. Она составляет основу кольцевых хромосом [44] Кольцевые хромосомы – замкнутые в кольцо последовательности ДНК, в которых расположены гены. В клетке человека кольцевые хромосомы во множестве копий находятся в митохондриях.
митохондрий [45] Митохондрии – структуры внутри клетки, отвечающие за выработку энергии (образование большей части АТФ, НАДН), окисление глюкозы, жиров. Источник свободных радикалов. Имеют собственные кольцевые ДНК, рибосомы и транспортные РНК.
и 46 линейных хромосом ядра [46] Структуры внутри клетки, в которых хранится и функционирует основной генетический материал.
человеческой соматической клетки. В отличие от других биомолекул, каждый тип хромосом присутствует лишь в двух копиях на клеточное ядро, а в половых клетках (сперматозоидах или яйцеклетках) каждая хромосома находится вообще лишь в одной копии. Поэтому даже небольшая поломка ДНК в месте расположения жизненно важного гена [47] Ген – структурная и функциональная единица наследственности живых организмов.
может стать фатальной. По причине множественного копирования при клеточном делении или под воздействием мутагенных факторов (ионизирующего излучения, свободных радикалов, токсичных веществ) с возрастом происходит накопление повреждений и утрата качества ДНК (рис. 2).

Рис. 2. Виды повреждений ДНК и их репарации.
Повреждения ДНК, как правило, быстро устраняются ферментами репарации, которые исправляют разрывы нити ДНК, удаляют ошибки и заполняют возникшие пробелы в последовательности нуклеотидов [48] Нуклеотиды – буквы генетического кода.
, используя в качестве матрицы соответствующий участок второй цепочки молекулы ДНК. Однако с возрастом способность к репарации ухудшается. Угасание активности ферментов репарации ДНК является неплохим маркером старения клеток. На это есть несколько причин. Репарация – энергозатратный процесс, она требует большого количества молекулы АТФ («энергетической валюты» клетки), а ее выработка с возрастом снижается из-за дисфункции митохондрий, «энергетических станций» клетки. Упадок биосинтетических процессов приводит к нехватке дезоксинуклеозидов – букв генетического кода, а репарация возможна только при их наличии. Наконец, эпигенетические изменения [49] Модификации ДНК или связанных с ней белков, которые не приводят к изменению генетического кода, однако способны включать или выключать те или иные гены.
подавляют активность генов самих репарационных белков. Неустранимые повреждения в ДНК служат причиной мутаций– однобуквенных замен в генетических последовательностях либо удвоений ( дупликаций) и выпадений целых участков ( делеций) или поломок хромосом ( аберраций). Нередко случаются и перемещения генетического материала с одного места на другое – транслокациии транспозиции, вызывающие генетическую нестабильность [50] Множественные изменения локализации, структуры или числа копий генов (или их частей) в геноме клетки или особи.
. Мутации и аберрации являются одной из причин возрастного нарушения функции клетки, гибели клеток или их опухолевого перерождения.
Уровень накопления клетками повреждений, мутаций и хромосомных аберраций служит эффективным маркером скорости старения. Существуют различные лабораторные методы, позволяющие оценить состояние клеток организма (рис. 3).

Рис. 3. Методы оценки количества повреждений ДНК.
Микроядра– патологические структуры внутри клеток, как правило, возникающие вокруг отставших во время деления обломков хромосом. Они выявляются при специальном окрашивании клеток и их анализе под световым микроскопом. С возрастом количество клеток, имеющих микроядра, становится больше, например, среди лейкоцитов [51] Лейкоциты – белые кровяные клетки, участвующие в реализации иммунитета.
крови или клеток кожи. Чем быстрее стареет организм, тем в более раннем возрасте наблюдается увеличение количества таких клеток.
Исследование с помощью люминесцентного микроскопа [52] Люминесцентный микроскоп – прибор, с помощью которого можно наблюдать свечение окрашенного специальным флуоресцентным красителем объекта при освещении невидимым ультрафиолетовым или синим светом.
светящихся (флуоресцентных) ДНК-зондов [53] Меченый фрагмент ДНК, использующийся для гибридизации со специфическим участком молекулы ДНК.
, имеющих сродство к тем или иным участкам хромосом человека, позволяет выявлять тонкие перестройки (транслокации, делеции, дупликации) в каждой из 46 хромосом человеческой клетки. Этот метод получил название FISH-окрашиванияхромосом.
Еще один маркер старения – двухцепочечные разрывы ДНК, как правило, вызывающие фатальные для клетки повреждения либо ведущие к генетической нестабильности и опухолевому перерождению. Однако именно их с возрастом становится все больше и больше. Специальное гистохимическое окрашивание (так называемые фокусы гамма-H2AX и 53BP1) позволяет подсчитать под люминесцентным микроскопом число таких разрывов на ядро и тем самым оценить скорость старения изучаемой ткани (в молодых клетках обычно нет таких разрывов, хотя они могут появиться при действии на организм ионизирующей радиации).
Читать дальшеИнтервал:
Закладка: