Виктор Шаталов - Эксперимент продолжается
- Название:Эксперимент продолжается
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Шаталов - Эксперимент продолжается краткое содержание
Эксперимент продолжается - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
"...Чуждые ложного стыда, не побоимся сказать, что одною из главных причин, почему не могли мы ранее выполнить своего обещания нашим читателям касательно разбора Сочинения Пушкина, было сознание неясности и неопределенности собственного нашего понятия о значении этого поэта".
Кто это сказал? В. Г. Белинский! Когда? Увы, через 5 лет после смерти Пушкина. А вот то, что сказал о нем, шестнадцатилетнем лицеисте, Г. Р. Державин, осталось неиссякаемым источником для творчества Пушкина на всю жизнь.
...Успех нас первый окрылил;
Старик Державин нас заметил
И, в гроб сходя, благословил.
Эти строки написаны А. С. Пушкиным в расцвете его творческого гения.
"Дорогой Вова! - пишет автор "Сборника задач московских математических олимпиад" Галина Ивановна Зубелевич одиннадцатилетнему школьнику из Донецка.- Ты "молодец, что так внимательно решаешь задачи. Некоторые из отмеченных тобой ошибок мы нашли сами, а вот второе решение задачи No 13 ты нашел первый. Продолжай решать. Мы будем очень рады получать от тебя новые способы решения задач и указания на допущенные нами ошибки. Это улучшит следующие издания сборника".
Вчитайтесь еще раз в это письмо. Еще раз мысленно соотнесите: кто его пишет? Кому? Сколько заботы в каждой его строке и о маленьком человеке и о большой математике! Много ли сыщется авторов книг, способных на вот такую человеческую теплоту.
Поверить в каждого!
1969 год. Октябрь. Второй месяц работает экспериментальная группа восьмиклассников средней школы No 5 Донецка. Работает уверенно, радостно, споро. А вот у Веры Харламовой, лишь только дело доходит до устных ответов у доски,- беда, да и только. Стилистические огрехи, разрывы в логических переходах, мучительно долгие паузы гасят мысль, выбивают из строгого ритма доказательств, и девочка часто умолкает, не доведя рассказ до конца. А время не ждет. Еще две-три недели, и на уроки придут учителя, преподаватели вузов, работники отделов народного образования, и... вопреки своим педагогическим убеждениям, на одном из занятий:
- Ты знаешь, Вера, кажется, тебе лучше уйти из нашей группы...
Все это было сказано едва ли не шепотом, но - глаза! В глазах у девочки застыли не просто отчаяние, а невыносимая боль. Однажды увидев такие глаза, забыть их уже невозможно. И в тот же день при проверке домашних упражнений у Веры в тетради по математике вдруг оказались стихи. Да, стихи! У П. А. Ларичева (Сборник задач по алгебре. Ч. II. М., 1965, с. 78) есть такая задача (No 499):
На две партии разбившись,
Забавлялись обезьяны.
Часть восьмая их в квадрате
В роще весело резвилась;
Криком радостным двенадцать Воздух свежий оглашали.
Вместе сколько, ты мне скажешь,
Обезьян там было в роще?
(Индусская задача из "Махабхараты")
Необычность, поэтический строй и какая-то солнечная свежесть задачи увлекли Веру настолько, что на поэзию ответила стихами.
Изучив задачу эту,
Я решенье предлагаю:
Икс возьмем, им обозначим
Обезьян всех, бывших в роще.
Из него двенадцать вычтем
И получим икс в квадрате,
Разделенному на восемь,
Тоже взятому в квадрате.
Уравненье это просто,
Без труда его решаю
И в ответе получаю
Сорок восемь иль шестнадцать.
Так четырнадцатилетняя Вера Харламова через восемь с половиной столетий, прошедших после создания этой задачи, поэтически перекликнулась с древнеиндийскими математиками - мудрецами ушедших веков.
Бытует мнение, что признавать свои ошибки, а тем более приносить извинения мучительно трудно. Неправда! Если вы мужественно и честно осознали свою неправоту, всей тяжестью несправедливости обрушившуюся на другого человека, то нет большего счастья, чем снять с себя бремя вины, принеся ему свои искренние извинения. Тем более если это твой ученик.
А Вера... Вера осталась в экспериментальной группе, успешно закончила Донецкий политехнический институт и работает сейчас инженером-конструктором в одном из проектных институтов.
Освободить ребенка от страха, сделать его свободным в своих решениях и поступках, вселить в него уверенность в свои силы, увидеть в нем полноценного и способного к творчеству человека - вот самый надежный и благородный путь становления детских талантов. Все дети могут учиться успешно, если рядом с ними терпеливые и добрые учителя.
Принцип Л. В. Занкова
1963 год. В IX класс школы рабочей молодежи пришла Наташа Корнева. Пришла из соседней общеобразовательной школы. Перехода этого, как избавления, давно уже ждали и ее учителя и она сама.
Прошло немногим более полутора месяцев, и стало совершенно очевидным, что Наташа наделена живым аналитическим умом...
Но как же стало возможным с высокой степенью уверенности определить способности ученицы, если за 8 лет до этого она не смогла осилить школьную программу даже на элементарную тройку?
Еще и сегодня классической методикой предписывается изучать материал небольшими дозами и тут же без промежутков закреплять его решением упражнений. На практике все это приобретает уродливые формы: значительная часть ребят, не разобравшись в теории, испытывает огромные трудности в практической части учебного материала. Но стоит только чуть больше внимания уделить теории и создать несколько больший разрыв во времени между нею и практикой, как тотчас же оживают все без исключения ребята. Принцип ведущей роли теоретических знаний, выдвинутый Л. В. Занковым, стал фундаментом, на котором базируется быстрое и надежное развитие каждого ученика. Упор на практику делается чуть позже, после изучения больших теоретических разделов7. А когда с теорией все становится простым и понятным, возникает всеобщее естественное желание проверить свои знания на практике.
Изложение материала большими структурно-целостными блоками позволяет увидеть единую картину там, где раньше в течение длительного времени вместо целого были только разрозненные фрагменты, не дававшие представления ни о роли раздела в общей системе знаний, ни о его внутренних взаимосвязях. В известной степени это можно сравнить с рассматриванием отдельных фрагментов большого художественного полотна без предварительного знакомства с картиной. Можно долго и придирчиво разглядывать сначала скачущего всадника, затем шеренги солдат, потом покрытые изморозью деревья, наконец, припорошенные снегом трупы и не получить представления о гениальном замысле В. Верещагина, выразившего проклятие молоху войны в своем бессмертном полотне "Скобелев на Шипке". В детали картины нужно начинать всматриваться только после того, как воспринят и осмыслен общий пафос художественного произведения.
Из всего сказанного вытекает непреложное следствие: начиная работу в новом классе, учитель в течение первых недель и даже месяцев должен вести всеохватное повторение изученного ранее.
Читать дальшеИнтервал:
Закладка: