Виктор Шаталов - Эксперимент продолжается

Тут можно читать онлайн Виктор Шаталов - Эксперимент продолжается - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочее домоводство. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Виктор Шаталов - Эксперимент продолжается краткое содержание

Эксперимент продолжается - описание и краткое содержание, автор Виктор Шаталов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эксперимент продолжается - читать онлайн бесплатно полную версию (весь текст целиком)

Эксперимент продолжается - читать книгу онлайн бесплатно, автор Виктор Шаталов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Геометрия - без опорных плакатов

Опорные плакаты на уроках геометрии применяются только в исключительных случаях, когда доказательства теорем изобилуют громоздкими математическими выкладками или очень сложными чертежами, требующими обстоятельных повторений с помощью чертежных приборов. К такого рода разделам можно отнести вывод формулы Герона, золотое сечение, чертежи и выкладки при выводе формулы Симпсона, доказательство формулы объема усеченной пирамиды и некоторые другие вопросы. А причина в одном: процесс выполнения чертежей в тетради несравненно более прост, нежели на классной доске. Да и нужна ли эта работа на доске, если ее можно оценить по качеству выполнения на листах бумаги, а устные ответы провести по готовым плакатам или слайдам - большим, красивым, аккуратным, многоцветным? Но, как уже было сказано, плакаты на геометрии исключение. Во всех остальных случаях они не нужны, и устные ответы ребят можно проводить двумя способами. Рассмотрим их.

В традиционных условиях на одном уроке учитель доказывает обычно одну, редко - 2 теоремы. Новая методика изложения материала по геометрии позволяет и даже, более того, настоятельно требует объяснять на уроке от 4 до 8 теорем, а на спаренном уроке - от 8 до 15! В пересчете на традиционные календарные сроки это иной раз соответствует материалу целой учебной четверти. Можно только посочувствовать учителям математики, перед которыми после этого сообщения во всей невероятности встанет сакраментальный вопрос "как?".

Странные чертежи

Сначала о времени. Для полного понимания процесса читателю необходимо сейчас взять в руки карандаш и, зафиксировав время по секундной стрелке, сделать следующие чертежи:

Получилось? Отлично. Расход времени - не более 30 секунд, так как качество исполнения существенного значения не имеет, и о чертежных инструментах, как мы помним, речь не шла.

Теперь следующий чертеж (первый слева).

Здесь все значительно проще, и более 15 секунд, вероятно, не потребовалось.

Наконец, еще два чертежа, и перейдем к существу дела.

Сейчас мы рассматриваем тот случай, когда чертежи предельно просты и для их выполнения нужны считанные секунды.

Начало урока. Весь класс выполняет письменную работу. По истечении нескольких минут одну за другой ребята начинают сдавать тетради. Двоим из них дается задание подготовить на доске чертежи для доказательства теорем. Этими теоремами, в частности, могут быть те, чертежи к которым только что были выполнены. Работу ребята ведут на тыльных сторонах крыльев доски, и это не является ни помехой, ни подсказкой для сидящих за партами.

Закончена письменная работа, все тетради сданы, и два человека, находящиеся у доски, готовы к ответам. Закрывается одно крыло, и к двум частям доски вызываются 3-4 ученика для доказательства следующих теорем. Они готовят чертежи. Первый ученик начинает рассказ.

- Признаки равенства прямоугольных треугольников. Всего их 4, мне нужно доказать только 3. Первый признак: если катеты одного треугольника соответственно равны катетам другого треугольника, то такие треугольники равны. Между катетами расположен прямой угол, и этот признак доказывать не нужно, так как он сводится к первому признаку косоугольных треугольников: если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны. Второй признак: если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны. Острые углы другой пары тоже равны, так как в сумме с данными дают по 90°: треугольники равны по второму признаку косоугольных - по стороне и двум прилежащим углам. Третий признак: если катет и прилежащий к нему острый угол одного треугольника соответственно равны катету и прилежащему к нему острому углу другого треугольника, то такие треугольники равны. Этот признак доказывать не нужно, к катету с другого конца прилежит прямой угол, и мы снова имеем дело со вторым признаком равенства косоугольных треугольников.

Весь этот рассказ продолжается немногим более одной минуты, и за это время каждый из вновь вызванных к доске ребят успевает сделать чертежи к своим теоремам. Теперь открывается первое крыло, закрывается второе и доказывается новая теорема.

- Если прямая не проходит через вершину треугольника и пересекает одну из его сторон, то она пересекает еще и только одну сторону треугольника. На чертеже прямая пересекает сторону АВ, значит, точки А и В расположены в разных полуплоскостях. Если точка С будет расположена в одной полуплоскости с точкой А, как на чертеже, тогда она будет расположена в разных полуплоскостях с точкой В. В этом случае не пересекается сторона АВ, зато пересекается сторона ВС. Если же точка С расположится в одной полуплоскости с точкой В, то она будет находиться в разных полуплоскостях с точкой А. Теперь прямая пересечет сторону АС и не пересечет сторону ВС. А через вершину С, по условию, прямая не проходит.

На доказательство этой теоремы не нужно и одной минуты.

Одновременно с доказательством второй теоремы еще 2-3 ученика начинают чертить на доске опорные сигналы к новым теоремам. Вполне возможно, что они за одну минуту не успеют выполнить все необходимые чертежи, но им это и не надо: к ответу давно уже готовы их товарищи. Начинается доказательство очередной теоремы - третий признак равенства треугольников.

Как видим, у доски могут одновременно находиться до 8 человек! Своими доказательствами они охватывают материал 8 традиционных уроков, а время, затрачиваемое для этого на уроке, укладывается в 10 минут. Итого: 10 минут письменная работа, 10 минут - устные ответы у доски, 10-15 минут - решение задач, 15-10 минут - объяснение нового материала.

Кто-то может спросить: "А при чем здесь опорные сигналы? Чертежи-то ничем не отличаются от чертежей официального учебника". Это смотря как к ним подходить. Чертежи к первым трем теоремам сигнализируют о входящих в доказательство элементах. Сигналом к доказательству второй теоремы служит точка С с расположенным рядом с нею вопросительным знаком. Необычным сигналом к доказательству третьего признака равенства треугольников являются обрывки медиан, выполненные к тому же ярким красным цветом. Такая нестандартность вызывает удивление ребят. Удивить - победить. Это почти по Суворову...

Конечно же, мы сейчас не задаемся целью изложить весь курс геометрии в опорных сигналах, но кому не захочется попробовать отойти от привычных шаблонов и изложить материал пусть не такими большими, но хотя бы большими дозами? Кто примет приглашение?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виктор Шаталов читать все книги автора по порядку

Виктор Шаталов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эксперимент продолжается отзывы


Отзывы читателей о книге Эксперимент продолжается, автор: Виктор Шаталов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x