Андрей Кашкаров - Современная электроника в новых практических схемах и конструкциях
- Название:Современная электроника в новых практических схемах и конструкциях
- Автор:
- Жанр:
- Издательство:Авторское
- Год:2012
- ISBN:978-5-222-13414-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Кашкаров - Современная электроника в новых практических схемах и конструкциях краткое содержание
Современная элементная база, используемая в рекомендуемых схемах, позволяет упростить их монтаж, расширить эксплуатационные возможности, делает повторение устройств возможным для радиолюбителей, имеющих небольшой опыт и располагающих минимумом приборов настройки.
Книга рассчитана на радиолюбителей и широкие читательские круги.
Современная электроника в новых практических схемах и конструкциях - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы понять, что такое аморфный металл, в данном случае следует подробно рассмотреть сами метки, закладываемые продавцами в упаковки с товаром.
На рис. 1.8 представлена акустомагнитная метка.

Рис. 1.8 Акустомагнитная метка противокражной системы
Каждый из нас многократно видел и даже держал в руках эти полоски. Попробуем разобраться – как они устроены.
♦ Если оторвать от упаковки товара противокражную метку и рассмотреть ее с обратной стороны, за полупрозрачной пластмассой можно увидеть металлическую полоску.
♦ Если разрезать метку, то можно извлечь 3 металлические полоски: две из аморфного металла (они более блестящие) и одну из обычной ферромагнитной ленты.
На рис. 1.9 показано внутреннее устройство акустомагнитных меток.

Рис. 1.9. Внутреннее устройство акустомагнитных меток
1.4.3. О вреде для здоровья человека. Практические рекомендации, чтобы прожить чуть дольше
Акустомагнитные электронные устройства среди всех противокражных систем, являются наиболее вредоносно действующими на здоровье человека. Ультразвуковые частоты, которые излучают их антенны, соизмеримы по частотам с некоторыми биологически активными частотами. Пиковая же мощность излучения может измеряться киловаттами.
Выводы делайте сами.
В любом случае, при проходе через «охранные ворота» старайтесь не задерживаться (дабы не получить дозу излучения), и в частности, если система сигнализации сработала (слышен сигнал тревоги), старайтесь выйти из зоны непосредственно влияния антенн, а уже потом разбирайтесь с причиной «сработки» сигнализации.
К сожалению, часто можно видеть обратную картину. Например, срабатывает сигнализация при проходе пожилой женщины через «ворота» системы EAR. Покупательница, услышав сигнал тревоги, недоумевая о причинах такого внимания к ней электроники, останавливается в «воротах» и ждет, пока к ней подойдут охранники. Все это время она находится под облучением высокой мощности, влияние которого на организм человека фундаментально не изучено.
Эти же рекомендации касаются и другого аспекта: старайтесь как можно меньше проходить через эти ворота даже тогда, когда охранники требуют это сделать ввиду поиска активной метки, находящейся где-то на товаре, который вы только что купили. Лучшим решением может быть показ им всех купленных вещей, и пронос через ворота этих вещей по отдельности.
1.4.4. Методы борьбы с EAR
Можно ли подавлять промышленную систему EAR?
Конечно, можно. В частности путем наведения на систему помех от других источников.
Сегодня многие читатели имеют доступ в Интернет, где без труда можно (при желании) найти электрическую схему подавителя противокражной системы EAR. То есть сделать так, чтобы не включалась сигнализация при проходе через «ворота» с покупкой, с которой (по разным причинам) не сняты (не нейтрализованы) акустомагнитные метки.
Правовой вопрос о выносе из магазина неоплаченных покупок я не обсуждаю (именно поэтому не привожу схему подавителя EAR). Важно другое. Даже если лишить противокражную сигнализацию «голоса», это не уменьшит вредоносного воздействия электроники на организм человека – покупателя, при его выходе из магазина (торгового зала).
1.4.5. Как зафиксировать излучение
Для радиолюбителя, который хочет самостоятельно разобраться в проблеме и найти ее лучшее решение, предлагаю самостоятельно зафиксировать излучение противокражных систем, описанных выше.
Для этого необходимо взять с собой в магазин специальный чувствительный прибор, например, сигнализатор – индикатор высокочастотного излучения из набора Мастер Кит NS178.
1.5. Простой звуковой сигнализатор, управляемый логическим нулем
Включение звукового сигнализатора путем подключения к устройству источника питания не всегда допустимо, особенно если звуковым сигнализатором необходимо управлять другим электронным устройством, которое формирует управляющий импульс логического нуля. При этом питание на звуковой сигнализатор поступает постоянно. Такое решение оправдывается тем, что устройство формирователя звукового сигнала собрано на одной микросхеме К561 серии (по технологии КМОП), и ток потребления не превышает 10 мА.
На рис. 1.10 представлена электрическая схема звукового сигнализатора.

Рис. 1.10. Электрическая схема звукового сигнализатора
На входе устройства можно установить кнопку с контактами на замыкание. Согласно схеме (рис. 1.10) сигнал логического нуля подключается к выводу 1 микросхемы DD1 и общему проводу.
Кнопка имитирует подачу на вывод 1 микросхемы DD1.1 сигнал логического нуля.
Схема состоит из генератора инфранизкой частоты на элементах DD1.1, DD1.2 (на выводе 4 микросхемы импульсы с частотой 0,5 Гц) и генератора импульсов частотой 1 кГц на элементах DD1.3, DD1.4.
При сигнале низкого логического уровня на выводе 1 элемента DD1.1 (при разрыве шлейфа охраны) генераторы начинают работать, причем первый генератор управляет работой второго, поэтому на выходе узла (вывод 11 микросхемы DD1.4) пачки импульсов появляются с переменной частотой.
Выходной сигнал с вывода 11 микросхемы DD1.4 можно подавать на вход другой схемы или на усилительный транзисторный каскад, нагруженный, в свою очередь, на пьезоэлектрический капсюль или (если применить усилитель большей мощности) на динамическую головку.
Практическое применение устройство универсально. Звуковой сигнализатор можно применять в устройствах охраны, игрушках, радиосвязи (например, в качестве звукового генератора сигнала «передача» и тонального вызова) и в других всевозможных случаях.
В налаживании данный электронный узел не нуждается.
Источник питания – стабилизированный с выходным напряжением 5—15 В.
1.6. Простой радиопейджер
Пейджер – это устройство, передающее сигнал (в том числе сигнал тревоги) на расстояние. В данном случае приставка «радио» означает передачу сигнала по радиоволнам. Многие современные сигнализации снабжены устройством радиопейджера, в которое входит брелок – извещатель – приемник радиосигнала. В частности такими сигнализациями оборудуют автомобили.
Сегодня можно купить практически все. Те, у кого есть день, как правило, так и делают. Те, кто хочет сделать своими руками – занимаются творчеством. Для творческих натур радиолюбителей предлагаю на страницах журнала простую электрическую схему радиопейджера – устройства, которое передает на расстояние до 0,5 км в прямой видимости радиосигнал «тревога». Владелец автомобиля, имеющий такое устройство, совершенно свободен (в частности, в ночные часы) от вскакивания с теплой постели на «зов сигнализации, по звуку похожей на мою». Повторившим рекомендуемое устройство, нет надобности разбирать «своя или чужая машина запела», услышав сквозь толщу стеклопакетов, как правило, стандартный сигнал автосигнализации. Автопейджер просигнализирует прямо дома, не тревожа соседей резкими трелями.
Читать дальшеИнтервал:
Закладка: