Йен Стюарт - Наука Плоского мира
- Название:Наука Плоского мира
- Автор:
- Жанр:
- Издательство:Array Литагент «1 редакция»
- Год:2015
- Город:Москва
- ISBN:978-5-699-82739-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йен Стюарт - Наука Плоского мира краткое содержание
В ходе захватывающего эксперимента волшебники Незримого университета случайно создали новую вселенную. В этой вселенной есть планета, которую они называют Круглый мир. (Ха! А мы используем более емкое определение – Земля ☺)
«Наука Плоского мира» – потрясающая смесь вымысла и научных фактов, созданная в результате творческого союза Терри Пратчетта и знаменитых популяризаторов науки Йена Стюарта и Джека Коэна. В книге удивительным образом сочетаются и фирменный юмор сэра Терри, и вполне доступные объяснения основных научных принципов (теория Большого взрыва и эволюция жизни на Земле, а также значительные моменты в истории науки).
И поверь, дорогой читатель, эта книга точно изменит твой взгляд на нашу Вселенную.
Впервые на русском языке!
Наука Плоского мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Каждая эпоха фантазировала в рамках существовавших тогда технологий. В романе Жюля Верна «С Земли на Луну прямым путем за 97 часов 20 минут», написанном в 1865 году, путешественники отправляются в космос на капсуле, выстреленной из огромной пушки, установленной во Флориде. В 1870 году вышло продолжение романа – «Вокруг Луны», и там уже описан целый космический поезд из подобных капсул. Жюль Верн не ошибся, выбрав Флориду. Он знал, что благодаря вращению Земли возникает центробежная сила, помогающая капсуле покинуть планету, и что сильнее всего она действует на экваторе. Поскольку героями книги были американцы, то Флорида вполне подошла. Когда НАСА начало запуск ракет, они пришли к тем же выводам и космодром был построен на мысе Канаверал.
У больших пушек, правда, имеются отдельные недостатки, такие, как стремление расплющить своих пассажиров по полу из-за слишком быстрого ускорения. Однако современные технологии помогают этого избежать благодаря постепенному росту скорости. С инженерной точки зрения ракеты пока наиболее предпочтительны, однако все еще может измениться. В 1926 году Роберт Годдард изобрел жидкое ракетное топливо. Первая его ракета поднялась на головокружительную высоту 40 футов (12,5 м). С тех пор ракеты проделали немалый путь, доставив людей на Луну и разослав наши приборы по всей Солнечной системе. Да и сами они стали куда совершеннее. И все же, все же… Не кажется ли вам, что способ покидать планету на гигантском одноразовом фейерверке не слишком элегантен?
До недавнего времени считалось, что запас энергии, необходимый для полета в космос, должен переноситься самим снарядом. Тем не менее у нас уже имеется, пусть и в зачаточном состоянии, способ покинуть Землю, оставив источник энергии на планете. Это лазерная двигательная установка: мощный луч когерентного света, направляемый на твердый предмет, буквально толкает его вперед. Подобный способ требует огромных затрат энергии, однако прототипы, созданные Лейком Мирабо, уже были испытаны в Центре высокоэнергетических лазеров на полигоне Уайт-Сэндс. В ноябре 1997 года небольшой снаряд достиг высоты 50 футов (15 м) за 5,5 секунды; в декабре того же года – уже 60 футов (20 м) за 4,9 секунды. Это может показаться не слишком впечатляющим, но сравните с первой ракетой Годдарда. Для достижения эффекта гироскопической стабилизации снаряд вращается со скоростью 6 тысяч оборотов в минуту. Лазерный луч частотой 20 импульсов в секунду направляется на специальную полость, нагревая воздух под ней и создавая волну сжатия в несколько тысяч атмосфер с температурой 30 000 °К. Именно это и толкает снаряд вперед. На большой высоте воздух становится разреженным, поэтому для аналогичной ракеты потребуется взять на борт топливо. Оно будет закачиваться в полость и испаряться под лазерным лучом. Для того чтобы вывести на орбиту снаряд весом в 2 фунта (1 кг), потребуется лазер мощностью 1 МВт.
А еще это может быть очень мощным оружием…
Другой вариант – это направленная передача энергии. С Земли можно направить пучок высокочастотной электромагнитной энергии. Это не просто фантазии: в 1975 году Дик Дикинсон и Уильям Браун переслали на расстояние в 1 милю пучок мощностью 30 кВт (чего достаточно для питания тридцати электроплиток). Джеймс Бенфорд и Мирабо предложили использовать для запуска космических кораблей волну миллиметрового диапазона, которая не затухает в атмосфере. Это одна из вариаций лазерного метода, при которой используются снаряды аналогичной конструкции.
Оба этих метода требуют огромного количества энергии. В них слышится отголосок старых инженерных предрассудков, что любой выход в космос потребует много энергии для преодоления гравитации Земли. Но их преимущество заключается в том, что источник энергии остается на планете, а электростанция мощностью 1000 МВт, которая потребуется для лазерного запуска, в промежутках может генерировать электроэнергию для бытовых нужд.
Более тонкий метод, основанный на принципе боласа, впервые был предложен в 50‑х годах ХХ века. Болас – это такое охотничье приспособление, представляющее собой 3 грузика, прикрепленных к ремешкам, концы которых связаны вместе. В полете болас вращается, растягивая грузики в стороны. Когда ремни достигают цели, грузики закручиваются по спирали и наносят смертельный удар. Похожее устройство, напоминающее гигантское колесо обозрения с треми спицами, на концах которых будут располагаться кабины, можно установить над экватором. Нижняя часть боласа будет располагаться где-то в нижних частях атмосферы, а верхняя – в космосе. Вы можете подлететь к нижнему «шарику» на самолете, пересесть в кабинку, а потом – рраз! – и вы уже в космосе. Самое большое препятствие на пути подобного проекта – это трос, который должен быть прочнее, чем все известные нам материалы. Впрочем, углеродное волокно – шаг в правильном направлении, поскольку сочетает прочность с легкостью. Атмосферное трение замедлило бы вращение боласа, но подобные потери можно компенсировать, установив в космосе солнечные батареи.
Впрочем, самым известным устройством подобного типа является космический лифт. Мы упоминали о нем в первой главе в метафорическом смысле, также в качестве технологической идеи. Теперь мы поговорим о нем подробнее. По сути, космический лифт первоначально представляет собой спутник на геостационарной орбите. Затем вы опускаете с него трос на поверхность Земли, сооружаете подходящую кабинку и находите подходящий материал для кабеля. Этот материал вы поднимаете наверх ракетами или системой боласов (а как только у вас будет первый такой трос, с его помощью можно соорудить и остальные). Все это вам нужно сделать лишь однажды , поэтому величина первоначальных расходов становится несущественной.
В начале книги мы уже подчеркивали, что, как только количество спускаемого вниз и поднимаемого наверх груза уравняется, преодоление гравитации станет абсолютно бесплатным и не потребует новых затрат энергии. С этого момента можно будет начать строить межпланетные корабли прямо в космосе, используя материалы, добытые на Луне или в поясе астероидов. Космический лифт станет новой отправной точкой нашей цивилизации, именно поэтому мы использовали его прежде как метафору, говоря о жизни вообще.
Идея космического лифта принадлежит ленинградскому инженеру Ю. Н. Арцутанову и впервые была опубликована в 1960 году в газете «Правда». Он назвал его «небесной канатной дорогой» и подсчитал, что таким образом можно доставлять на орбиту 12 тысяч тонн грузов в день. Благодаря Джону Айзексу, Хью Браднеру и Джорджу Бэкусу в 1966 году идея привлекла внимание и западных ученых. Этих ученых полеты в космос не интересовали, они были океанографами, то есть теми людьми, которых весьма занимает подвешивание тяжестей на тросах. Они предпочли бы протянуть тросы на дно океана, а не запускать в космос. Океанографы не знали о русской разработке, но вскоре идеи Арцутанова получили широкую известность среди западных ученых, после того как русский космонавт и живописец Алексей Леонов создал картину, изображающую космический лифт в действии.
Читать дальшеИнтервал:
Закладка: