Станислав Улам - Приключения математика

Тут можно читать онлайн Станислав Улам - Приключения математика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Научно-издательский центр «Регулярная и хаотическая динамика», год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Приключения математика
  • Автор:
  • Жанр:
  • Издательство:
    Научно-издательский центр «Регулярная и хаотическая динамика»
  • Год:
    2001
  • Город:
    Ижевск
  • ISBN:
    5-93972-084-6
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Улам - Приключения математика краткое содержание

Приключения математика - описание и краткое содержание, автор Станислав Улам, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.).
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.

Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)

Приключения математика - читать книгу онлайн бесплатно, автор Станислав Улам
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вскоре после моего прибытия в Кембридж [9] Гарвард находится в американском городе Кембридже близ Бостона, штат Массачусетс. — Прим. ред. он пригласил меня к себе на обед. Там состоялось мое первое знакомство с незнакомыми мне блюдами вроде тыквенного пирога. После обеда, который был очень приятным, я собрался уходить, и Дж. Д. взял мое пальто, чтобы помочь надеть его. Подобного рода любезность в Польше была неслыханным делом; там старший никогда бы не помог тому, кто намного младше его. Помню, что я густо покраснел от смущения.

За ланчем я нередко встречался с его сыном Гарретом, и мы частенько прогуливались вместе. Мы много говорили о математике, а также предавались обсуждению слухов — привычному для математиков и любимому ими занятию. Конечно, оценивать, насколько хорош X или Y — тема для разговора довольно неглубокая, но такова уж особенность нашего племени. Читатель, возможно, уже заметил, что она не чужда и мне. Так как математика больше относится к роду искусства, ценности здесь зависят скорее от личных вкусов и чувств, чем от объективных, фактически существующих понятий. Математики тоже падки на тщеславие, хоть и в меньшей степени, чем оперные теноры или художники. Но когда каждый математик знает какой-нибудь определенный «раздельчик» математики лучше кого-то другого, и если учесть, что математика — настолько емкий, а сейчас все более и более специализированный предмет, некоторые находят удовольствие в распределении наиболее известных математиков по «классам» в линейном порядке и комментировании их относительных заслуг. В целом это безвредное, хоть и отчасти пустое времяпрепровождение.

Помню, как лет в восемь-девять я попытался оценить любимые фрукты, расположив их в порядке их «хорошести». Я рассуждал, что груша лучше яблока, которое лучше сливы, которая лучше апельсина, до тех пор, пока, к своему ужасу, я не обнаружил, что, говоря языком математика, в этом отношении отсутствует транзитивность, а именно — сливы могут быть лучше орехов, которые лучше яблок, но яблоки лучше слив. Я попал в порочный круг, и в том возрасте это просто ошеломило меня. Нечто похожее характеризует и «рейтинги» математиков.

Многие математики также щепетильно относятся к тому, что они считают самыми прекрасными детищами своего ума — к своим результатам и теоремам — и склонны проявлять собственническое отношение к ним. Парадоксально, но также они склонны считать свою работу трудной, а работу других — более легкой. В других областях все как раз наоборот — там чем лучше ты с чем-то знаком, тем легче оно тебе кажется.

Кроме того, математики охочи до препирательств, и личная вражда между ними дело известное. Когда я стал деканом математического факультета Колорадского университета, то обратил внимание на то, что трудности, связанные с ведением дел N человек, на самом деле пропорциональны не N , a N 2. Это стало моей первой «административной теоремой». Из шестидесяти профессоров можно составить около 1800 пар. Неудивительно, что во всем этом множестве существуют такие пары, члены которых не переносят друг друга.

Из гарвардских математиков, которых я знал, я бы упомянул о Хаслере Уитни, Маршалле Стоуне и Норберте Винере. Уитни был молодым старшим преподавателем и представлял интерес не только как математик. Он был дружелюбен, но довольно молчалив — тот физиологический тип, что в этой стране встречается чаще, чем в центральной Европе — застенчив, но не лишен уверенности в себе, с необычным юмором, честностью, проявляющейся буквально во всем, и особым даром настойчивого и глубокого изучения математики.

Маршалл Стоун, с которым я познакомился в 1935 году, когда вместе с фон Нейман и Биркгофом он проезжал через Варшаву, возвращаясь с московского конгресса, сделал в университете головокружительную карьеру, хотя ему был лишь тридцать один год. Уже состоявшийся профессор, он имел большой вес в делах факультета и всего университета. Он написал классическую работу — подробную и авторитетную книгу по гильбертову пространству и бесконечномерному обобщению трехмерного и n -мерного евклидова пространств, ставшую математической основой современной квантовой теории в физике. Он был сыном Гарлана Стоуна, главного судьи Верховного суда. Говорят, что как-то отец с гордостью сказал о математических достижениях Маршалла: «Я озадачен, но все же счастлив, что мой сын написал книгу, в которой я не понимаю ни слова».

И Норберт Винер! С ним я познакомился во время своего выступления на коллоквиуме, в мой первый год в Гарварде. Я читал лекцию по нескольким задачам топологических групп и упомянул о полученном мною в Польше в 1930 году результате, доказывающем невозможность существования полностью аддитивной меры, определенной во всех подмножествах данного множества. Винер, который всегда сидел на лекциях в полусонном состоянии, за исключением тех моментов, когда слышал свое имя (тогда он резко вскакивал и садился обратно, что выглядело очень комично), перебил меня, сказав: «Вообще-то нечто подобное уже было доказано Витали». Я ответил ему, что знаю о результате Витали, и что он намного слабее моего, потому что требует наличия дополнительного свойства, а именно равенства конгруэнтных множеств, тогда как мой результат не предполагает подобного постулата, а потому является более сильным, чисто теоретическим доказательством в теории множеств. После лекции он подошел ко мне и извинился, согласившись с моими доводами. Так началось наше знакомство.

Конечно, я слышал о Винере и до этой встречи, и не только о его славе математика-чародея, работе в области теории чисел, знаменитых тауберовых теоремах и исследованию рядов Фурье, но также и о его эксцентричности. В Польше я узнал от Джозефа Марцинкевича о написанной им и Пэли книге, рассматривающей вопросы суммируемости преобразований Фурье. Реймонд Пэли, один из самых перспективных и успешных английских математиков, погиб в очень молодом возрасте в результате несчастного случая в горах. Марцинкевич был студентом Антони Зигмунда. Во Львов он приехал уже с докторской степенью, и поскольку у него уже был опыт в вопросах тригонометрических рядов, тригонометрических преобразований и суммируемости, он стал председательствовать в Шотландском кафе во время наших обсуждений работ Винера. Марцинкевич, как и Пэли, на которого он был похож и своим талантом, и сходными математическими интересами, и достижениями, погиб при исполнении долга офицера польской армии в начале Второй мировой войны во время военной кампании 1939 года.

Рассеянный, с виду словно «не от мира сего», Винер все же мог давать некую интуитивную оценку другим людям, и я, должно быть, заинтересовал его. Несмотря на нашу разницу в возрасте (его сорок против моих двадцати шести), он, временами, находил меня в моей маленькой квартире в Адамс Хаусе, иногда поздно вечером, и предлагал завести математическую беседу. Он говорил: «Давайте пойдем ко мне в кабинет, там я смогу писать на доске». Мне этот вариант походил больше, так как если бы мы оставались у меня, было бы трудно выпроводить его и не показаться грубым. По темным улицам мы ехали в его машине в МТИ, открывали входную дверь, включали свет, и он начинал говорить. Но, хоть Винер и был всегда интересен, где-нибудь через час я начинал клевать носом и, в конце концов, ухитрялся выбрать момент и намекнуть, что пришло время возвращаться домой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Улам читать все книги автора по порядку

Станислав Улам - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Приключения математика отзывы


Отзывы читателей о книге Приключения математика, автор: Станислав Улам. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x