Станислав Улам - Приключения математика

Тут можно читать онлайн Станислав Улам - Приключения математика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Научно-издательский центр «Регулярная и хаотическая динамика», год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Приключения математика
  • Автор:
  • Жанр:
  • Издательство:
    Научно-издательский центр «Регулярная и хаотическая динамика»
  • Год:
    2001
  • Город:
    Ижевск
  • ISBN:
    5-93972-084-6
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Улам - Приключения математика краткое содержание

Приключения математика - описание и краткое содержание, автор Станислав Улам, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.).
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.

Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)

Приключения математика - читать книгу онлайн бесплатно, автор Станислав Улам
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фон Нейман был другим. У него тоже было несколько довольно независимых технических приемов, которые он знал как свои пять пальцев (редко случается, что таких приемов у математиков больше двух или трех). К ним относилась его способность к символьным преобразованиям линейных операторов. Он обладал также непостижимым «здравым смыслом» в понимании логических структур, основ и «надстроек» в новых математических теориях. Это сослужило ему хорошую службу позже, когда он заинтересовался идеей возможной теории автоматов и взял на себя разработку как концепции, так и конструирования вычислительных машин. Он пытался выявить и провести формальные аналогии между функционированием нервной системы в общем и человеческого мозга в частности и работой только что разработанных компьютеров.

Винер, в некоторой степени скованный инфантилизмом и наивностью, психологически был, наверное, в невыгодном положении от того, что по воле своего отца он с самого детства стал для всех вундеркиндом. Фон Нейман, который также начинал довольно молодым, знал мир намного лучше и проявлял больше здравого смысла в том, что находится вне области чистого интеллекта. Кроме того, Винер больше придерживался традиций схоластической еврейской школы, даже несмотря на то, что его мнения и убеждения были очень либеральными. Невозможно было не заметить, что натуре фон Неймана эта черта была совершенно чужда.

Неисчерпаемая любознательность Джонни распространялась на многие разделы теоретической физики, начиная с его работы, в которой он, начав освоение нового направления, предпринял попытку сформулировать прочную математическую основу квантовой теории. Его книга «Математические основы квантовой механики», изданная свыше сорока лет назад, является не только классикой, но своего рода библией в данном предмете. Особенно его завораживала загадочная роль числа Рейнольдса и мнимая тайна внезапного возникновения турбулентности в движении жидкости. Он обсуждал с Винером озадачивающие значения этого числа, которое является «безразмерным» — чистое число, выражающее отношение сил инерции к силам вязкости, число большое — порядка двух тысяч. Почему же именно столько, а, скажем, не единица, не десять и не пятьдесят? Тогда мы с Джонни пришли к выводу, что пролить свет на причины перехода от ламинарного (регулярного) потока к турбулентному могут лишь современные подробные численные расчеты для множества частных случаев.

Он рассказал мне еще об одной своей дискуссии с Винером, в ходе которой они занимали различные позиции: Джонни, рассуждая о создании моделей, характеризующих работу человеческого мозга, выступал в пользу численного метода на основе последовательности тактов, тогда как Винер настаивал на непрерывных или «гормональных» основах. Дихотомия между двумя этими точками зрения до сих пор представляет собой огромный интерес и к настоящему моменту, конечно, приняла уже другой облик и стала глубже благодаря более обширным знаниям анатомии мозга и одновременно более емким исследованиям в теории автоматов.

Весьма любопытными были отношения между фон Нейманом и Дж. Д. Биркгофом. Биркгоф не восхищался и не ценил в полной мере талант фон Неймана. По-видимому, он не считал, что те многие области математики, в которых работал фон Нейман, представляют собой особую ценность. Он восхищался его блестящей техникой, но все же вкусы Дж. Д. были более классическими, в традициях Пуанкаре и великой французской школы анализа. Совсем другие интересы имел фон Нейман. Биркгоф стремился получить какие-нибудь грандиозные результаты в физике, и на его счету действительно есть несколько интересных с технической стороны, но не принципиально важных достижений в общей теории относительности. Несколько раз он читал лекции по этому предмету в Мехико, стимулируя маленькую местную школу релятивистов. Интересы фон Неймана были связаны с основами последних разработок в новой квантовой теории. Они демонстрировали различия в интересах, подходах, системах ценностей. Биркгоф предпочитал исследовать скорее вглубь, чем вширь. Фон Нейман делал, до некоторой степени, и то, и другое. Конечно, еще была разница в возрасте — примерно в четверть века — в происхождении и в воспитании. Кроме того, фон Нейман так никогда и не простил Дж. Д. того, что тот «сорвал куш» в деле с эргодической теоремой. Фон Нейман первым доказал слабую эргодическую теорему, как ее сейчас называют. Биркгоф, применив какой-то совершенно виртуозный метод комбинаторного мышления, смог доказать более сильную теорему и, располагая большим влиянием на редакторов издания «Proceedings of the National Academy of Sciences», первым издал свою работу. Джонни так и не смог забыть этого. Иногда он жаловался на это мне, но всегда вскользь и не напрямую.

В дополнение к элементарным курсам математики, которые я читал во время своего первого года в Обществе, меня попросили постепенно приступить и к более сложным курсам. Мне это было по нраву, ведь лучший способ выучить предмет — это попытаться систематически обучать ему. Тогда сам постигаешь ключевые моменты, суть дела. Один курс, довольно важный, был по классической механике и читался для студентов последнего курса — курса Math. 4, если я правильно запомнил. Другой курс, Math. 9, был по теории вероятностей. Я в то время не очень представлял себе, что означали оценки: А, В, С, D или F . Но мои нормы были весьма жесткими. Я помню неплохого в общем студента, который был не согласен с оценкой « С ». За него вступились несколько профессоров, но я упрямо и, возможно, глупо стоял на своем. Сейчас я уже становлюсь все более снисходительным и ставлю студентам « С » или « D », когда они в действительности заслуживают « F » или еще того хуже.

Тамаркин, который был профессором в Броуновском университете, попросил меня прочесть вместо него выпускной курс, пока он в отпуске. Я решил посвятить этот курс теории функций нескольких переменных. Он включал в себя много нового материала, немалая часть которого была заимствована из моих собственных недавних работ, чем я очень гордился. Каждую пятницу я ездил поездом в Провиденс, читал лекцию, проводил выходные у Тамаркина и в воскресение возвращался в Кембридж. Во время своего последнего приезда во Львов летом 1939 года я упомянул о содержании курса Мазуру, и ему оно очень понравилось. Он одобрил материал и его организацию и сказал, что и сам с удовольствием прочитал бы этот курс, что меня порадовало и ободрило.

Тамаркин был интереснейшим человеком. Он был среднего роста и очень крупный — в нем было, я бы сказал, фунтов тридцать лишнего веса. Он был довольно близоруким, заядлым курильщиком сигар и сигарет и, как правило, чрезвычайно общительным. Узнав его получше, я открыл в нем замечательные качества характера и ума.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Улам читать все книги автора по порядку

Станислав Улам - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Приключения математика отзывы


Отзывы читателей о книге Приключения математика, автор: Станислав Улам. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x