Станислав Улам - Приключения математика
- Название:Приключения математика
- Автор:
- Жанр:
- Издательство:Научно-издательский центр «Регулярная и хаотическая динамика»
- Год:2001
- Город:Ижевск
- ISBN:5-93972-084-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Улам - Приключения математика краткое содержание
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Винеру во многом было свойственно ребячество. Очень щепетильно относясь к своему собственному месту в истории математики, он нуждался в беспрестанном заверении в его творческих способностях. Я был просто оглушен, когда через несколько недель после нашей первой встречи он спросил меня: «Улам! Вы думаете, мне уже нечего делать в математике?» Действительно, порой математики склонны волноваться насчет своей ослабевающей способности к концентрации намного сильнее, чем некоторые мужчины по поводу своей сексуальной состоятельности. Тогда я, при своей дерзости, испытывал сильный соблазн в шутку ответить ему «да», но сдержался; он вряд ли понял бы, что я шучу. В связи с этим «мне уже нечего делать», я вспоминаю также случай, когда несколько лет спустя во время Первого всемирного конгресса математиков, проходившего в Кембридже, я прогуливался по Массачусетс Авеню и увидел Винера, стоящего перед книжным магазином. Его лицо было словно приклеено к витрине, а когда он все же заметил меня, то закричал: «Улам! Посмотри! Там моя книга! Улам! Работу по теории вероятностей, которую мы с тобой проделали, так долго не замечали, а теперь взгляни! Сегодня она в центре всего!» Я посчитал это обезоруживающим и просто по-блаженному наивным.
Анекдотов о Винере было не счесть; у каждого знавшего его математика была своя собственная коллекция. Я поделюсь своей историей о случае, произошедшем осенью 1957 года, когда я приехал в МТИ в качестве приходящего профессора. Мне отвели кабинет как раз напротив его кабинета. На следующий после прибытия день мы встретились в коридоре, и он остановил меня со словами:
«Улам! Я не могу сказать вам, над чем я работаю сейчас, ведь вы в состоянии наложить на мою работу гриф секретности!» (Намекая, очевидно, на должность, занимаемую мной в Лос-Аламосе.) Нет нужды говорить, что я не мог сделать ничего подобного.
В Винере всегда жило чувство неуверенности. До войны он часто упоминал в беседе о своих личных проблемах с Я. Д. Тамаркиным, который был его большим другом. Когда он писал автобиографию, то показал Тамаркину свою толстую рукопись. Тамаркин, с которым я познакомился в 1936 году и с которым мы стали довольно дружны, рассказал мне об этой рукописи и о том, насколько она интересна. Но он также заметил, что Винера могли привлечь к суду и обвинить в клевете за многие его откровения. Почти с неверием он говорил о тексте Винера и о том, как он пытался отговорить его выпускать книгу в свет в таком виде. То, что появилось в конечном итоге, было, судя по всему, весьма смягченным вариантом оригинала.
Другое мое воспоминание о Винере связано со случаем, когда он попросил меня поехать с ним в Бостон, чтобы встретить на Саут Стэйшн английского математика Г. X. Харди, прибывающего в Штаты с визитом. Он знал, что я встречался с Харди в Англии. Вместе с еще одним математиком, Норманом Левинсоном, насколько мне помнится, мы встретили Харди и посадили его на наш поезд. Винер, который очень гордился своим знанием китайского народа, его культуры и даже языка, пригласил всех на ланч в китайский ресторан. Сходу он начал по-китайски разговаривать с официантом, который, казалось, не понимал ни слова из его речи. Винер же невинно заметил: «Он, вероятно, с юга и не говорит на мандаринском наречии». (Мы, правда, были не очень-то убеждены в законченности сего объяснения.) Это был очень приятный обед, во время которого мы успели много поговорить о математике. В конце Винер, принявший счет, обнаружил, что у него нет с собой денег. К счастью, порывшись в карманах, каждый из нас нашел несколько долларов. Позже Винер вернул нам все до последнего цента.
Говорили, что Винер, несмотря на то, что его вполне устраивала профессура в МТИ, был очень разочарован тем, что Гарвард никогда не предлагал ему должности. Его отец был профессором в Гарварде, и Норберт страстно желал пойти по его стопам.
Хотя Дж. Д. Биркгоф был, по меньшей мере, лет на десять старше Винера, последний испытывал по отношению к нему чувство соперничества и стремился поравняться с ним или даже превзойти его в славе и математических достижениях. Когда было опубликовано знаменитое доказательство эргодической теоремы, полученное Биркгофом, Винер что есть сил старался обогнать его и доказать еще более сложную теорему. Ему это удалось, однако в силе его результата нет той простоты и фундаментальности, что несет в себе доказательство Дж. Д. Биркгофа. Это еще один пример присущего математикам духа соперничества и источника их честолюбия.
Я думаю, что Винер как математик имел прекрасные способности — проницательность и техничность. Он обладал потрясающими общими познаниями, но, по-моему, в нем не было той искорки оригинальности, которая создает что-то «необычное», непохожее на то, что уже сделано другими. В математике, как и в физике, очень многое зависит от шанса, от благоприятного момента. Возможно, и фон Нейману не хватало чего-то от «иррационального», хотя он со своей замечательной творческой жилкой безусловно стремился к пределам «разумного» и достигал их.
Винер и фон Нейман имели во многом пересекающиеся интересы и суждения о том, что имеет значение в чистой математике и ее приложениях, однако сравнивать их как личностей сложно. Норберт Винер был действительно эксцентричным человеком, фон Нейман, напротив, был действительно солидным. У Винера было чутье на вещи, которые стоят того, чтобы над ними поразмыслить, и он имел правильное суждение о возможностях применения математики в более важных и более явных приложениях теоретической физики. Он демонстрировал необыкновенную технику в использовании преобразований Фурье. Просто поразительно, как много можно сделать с помощью алгоритмов или символизма! Меня всегда изумляет то, как определенная способность вкупе со специальным и как будто строго ограничивающим техническим приемом могут давать так много в результате. Винер был в этом деле мастером. Я знавал и других математиков, которым также это удавалось, но в более скромных масштабах. Например, Штейнгауз смог проникнуть очень глубоко в другие области, а его студент Марк Кац, который сейчас работает в университете Рокфеллера, даже превзошел его в этом. Другой поляк, Антони Зигмунд, который живет сейчас в Чикаго, — мастер в обширнейшей области тригонометрических рядов. Несколько его студентов достигли эпохальных результатов в других областях, к примеру, Пол Коэн преуспел в теории множеств — самой общей и абстрактной части математики.
Я не думаю, что Винера особенно привлекал метод комбинаторного мышления или работа над задачами обоснования математической логики или теории множеств. Быть может, в начале своей карьеры он пошел именно в этом направлении, но позже занялся теорией чисел и другими областями.
Читать дальшеИнтервал:
Закладка: