П. Светлов - Александр Александрович Любищев 1890—1972

Тут можно читать онлайн П. Светлов - Александр Александрович Любищев 1890—1972 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Наука, год 1982. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Александр Александрович Любищев 1890—1972
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1982
  • Город:
    Ленинград
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

П. Светлов - Александр Александрович Любищев 1890—1972 краткое содержание

Александр Александрович Любищев 1890—1972 - описание и краткое содержание, автор П. Светлов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга посвящена известному биологу А. А. Любищеву, интерес к творчеству которого особенно возрос после выхода в свет повести Д. А. Гранина «Эта странная жизнь». В работе освещен жизненный путь ученого, его вклад в морфологию, систематику, теорию эволюции, математическую биологию, сельскохозяйственную энтомологию, науковедение, философские проблемы естествознания. Приведены сведения об уникальном архиве А. А. Любищева.
Для биологов и читателей, интересующихся общими проблемами развития науки.

Александр Александрович Любищев 1890—1972 - читать онлайн бесплатно полную версию (весь текст целиком)

Александр Александрович Любищев 1890—1972 - читать книгу онлайн бесплатно, автор П. Светлов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

"Всякое исследование должно стремиться к тому, чтобы удовлетворить следующим трем требованиям:

1. Оно должно быть целеустремленным, т. е. иметь перед собой определенную, подлежащую решению задачу;

2. Оно должно быть эффективным, т. е. полученные выводы должны быть достаточно надежны, для того чтобы обладать принудительной силой, и мера надежности должна быть известна; 3. Наконец, оно должно быть экономным, т. е. должно быть осуществлено с минимальной затратой сил и средств ... Очень немногие ясно сознают, что даже при правильно организованном исследовании, достаточно гарантирующем от ошибочных выводов, число исследованных объектов и точность должны вытекать из конкретных условий исследования. Если же опыт неправильно организован, то педантичная точность и огромность материала ошибочных выводов не предотвратят. Получается, как говорит Р. Фишер, что не только начинают стрелять из пушек по воробьям, но, что еще печальнее, не попадают в воробьев.

... Без биологически направленной мысли биометрическое исследование может привести только к накоплению совершенно ненужных материалов и оказаться совершенно бесцельным. Но, с другой стороны, без математической обработки часто даже очень изощренная биологическая мысль для решения многих актуальных вопросов не в состоянии преодолеть хаос изолированных фактических данных и пробиться сквозь дебри необоснованных предположений.

...Дисперсионный анализ не представляет собой какого-то насилия над материалом, стремления путем математических выкладок "вымучить" из материала вывод, вовсе не вытекающий из него. Напротив, и этот метод, как все математические приемы, при правильном применении является методом, позволяющим получить надежный вывод и там, где на глаз мы не вполне уверены в надежности: это и есть обычный здравый смысл, только облеченный в точную форму.

... По сравнению с другими методами прикладной математики дисперсионный анализ обладает одним огромным преимуществом. Лежащая в основе его теорема аддитивности, несмотря на трудность ее чисто математического доказательства, чрезвычайно проста для понимания, а главное, доступна для постоянной проверки. Вот эта-то возможность постоянно проверять себя, приспособляя метод к конкретным задачам, и делает возможным то, что разработка этого метода для решения задач новых типов может производиться и лицами, не имеющими основательной математической подготовки. Поэтому эта ветвь математической статистики помимо своей плодотворности является и более простой в своем применении, чем многие классические методы. Задачей настоящего руководства и являлось популяризацией этого метода увеличить эффективность работы биологов".

В принципе эффективности центральным пунктом является диалектика в антитезе правильность—точность, в частности противоположение систематических и случайных ошибок. Увеличивая точность, мы теряем правильность, при наращивании правильности теряется точность (см. гл. 6 этой книги). Существенное место в работе занимает также принцип итеративности, т. е. последовательное приближение к цели от ориентировочных этапов ко все более точным. С этим принципом связана идея комплексирования ряда малонадежных показаний в одно надежное. Линейные комбинации исходных признаков, обеспечивающие надежное различие объектов, как раз и являются дискриминантными функциями, используемыми в практической систематике [47]. Основным критерием истинности служит непротиворечивость результатов, согласованность этапов, интерпретируемость картины в целом. А. А. часто говорил о священном принципе: "Да будет выслушана противная сторона!"

Биометрическая деятельность А. А. протекала в трудной борьбе с противниками проникновения математики в биологию. Результаты этой деятельности имеют огромное экономическое значение. Отсылаем читателя к гл. 4 и 5 этой книги.

Математический способ мышления

Точные науки называются точными не потому, что они достоверны, а потому, что в точных науках ученые знают меру неточности своих утверждений.

А. А. Любищев.

Уроки истории науки

Роль математики в общебиологических работах Любищева не менее важна, чем в его конкретных исследованиях. Ю. А. Шрейдер (гл. 6) отмечает два аспекта математизации: четкость и глубину, сливающиеся в синтезе точности знаний и целостности видения мира. Внедрение математического стиля суждений в биологические науки — одна из главных заслуг А. А. Этот стиль был присущ ему органически. Показательны две выдержки из его переписки с Д. Д. Мордухай-Болтовским.[ 1Мордухай-Болтовской Дмитрий Дмитриевич (1876—1952) — известный советский математик, геометр.]

"Я думаю постепенно приводить в порядок кое-какие накопившиеся мысли, и здесь часто имеется контакт с математикой ... Я всегда завидовал богатству воображения у математиков (многомерные и неевклидовы пространства, теория множеств, групп и т. д.), но и сам стремлюсь фантазировать в своей области, стараясь обобщать те данные, которые можно извлечь из наблюдения над существующими организмами" (6.1.47 г.).

"Вашу основную аксиоматическую точку зрения, что интерес представляет не только то, что есть и что было, но и то, что могло бы быть, я полностью разделяю, и здесь я резко расхожусь с большинством биологов, которые в дискуссии часто меня упрекают в том, что я рассуждаю как математик, а не как биолог. Почему большинство биологов не интересуется возможным, а только осуществленным? Потому что одним из ходячих биологических постулатов (хотя и не осознанных) является мнение, что строение каждого организма есть следствие ряда исторических обстоятельств, носящих в значительной мере случайный характер, и что поэтому совершенно праздной является работа по изучению мыслимого многообразия ... Даже на современном этапе и пользуясь совершенно бесспорными положениями можно наметить те ограничения, которые накладываются на эволюцию живых форм" (3.3.47 г.).

О связи математики, физики и биологии А. А. высказывался следующим образом:

"Есть прекрасное выражение: "Математика — это царица и служанка всех наук". Как царица — она всегда останется ведущей, так как только математизация науки способна поднять ее на подлинно высокий уровень. Как служанку — ее ведут другие науки, и она отвечает на запросы, которые ставятся ими. Совершенно несомненно, что ставить вопросы должны представители опытных наук, а для этого они должны тоже кое-что понимать в математике, иначе они не смогут поставить вопроса в понятной для математиков форме. Вот взаимоотношения физики и математики достигли сейчас великолепного уровня.

... Наиболее важный путь контакта между математикой и биологией: внедрение математического способа мышления в биологию. Очень важным для этого является использование эволюции понятия аксиомы и построение аксиоматики биологии. Сейчас аксиомой называют недоказуемое положение, которое хотя и не является абсолютно точной истиной, но тем не менее лежит в основе наших рассуждений и вместе с другими такими положениями образует непротиворечивую систему.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


П. Светлов читать все книги автора по порядку

П. Светлов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Александр Александрович Любищев 1890—1972 отзывы


Отзывы читателей о книге Александр Александрович Любищев 1890—1972, автор: П. Светлов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x