Н. Белов - Алексей Васильевич Шубников (1887—1970)

Тут можно читать онлайн Н. Белов - Алексей Васильевич Шубников (1887—1970) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Наука, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Алексей Васильевич Шубников (1887—1970)
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1984
  • Город:
    Л.:
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Н. Белов - Алексей Васильевич Шубников (1887—1970) краткое содержание

Алексей Васильевич Шубников (1887—1970) - описание и краткое содержание, автор Н. Белов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии. Книга представляет интерес для физиков, кристаллографов, химиков, математиков, минералогов и для всех, кто интересуется кристаллами и наукой о твердом теле.

Алексей Васильевич Шубников (1887—1970) - читать онлайн бесплатно полную версию (весь текст целиком)

Алексей Васильевич Шубников (1887—1970) - читать книгу онлайн бесплатно, автор Н. Белов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1930 г. выходит статья А. В. Шубникова с принципиально новым развитием теории симметрии [55]. В ней вводится понятие семиконтинуума как среды, дискретной в одном и непрерывной в другом направлениях. В этом же году в работе Хееша впервые выведена 31 группа слоевых семиконтинуумов, 80 групп пространственных семиконтинуумов с одной непрерывной трансляцией и бесконечное число (75 кристаллографических) пространственных семиконтинуумов с двумя непрерывными трансляциями. В статье А. В. Шубникова изображена 31 группа симметрии лент, причем использован прием Вебера описания 80 слоевых групп с помощью черно-белых паркетов, заключающийся в раскраске лицевой и изнаночной сторон асимметричного треугольника в черный и белый цвета. Впоследствии это привело к оформлению принципа «антисимметрии» в трудах А. В. Шубникова.

Дальнейшее развитие принципов симметрии в трудах А. В. Шубникова можно разделить на три основных направления, связанных с группами изометрической симметрии и ее расширениями, уточнением и классификацией групп симметрии, философским осмыслением категорий симметрии и ее места в современной науке и искусстве. Статья А. В. Шубникова [70] предопределила дальнейшее развитие его творчества в области симметрии. Она начинается с примечательных слов: «...до сих пор только кристаллография для своего развития пользовалась учением о симметрии как специфическим методом познания. Правда, в разработке самого учения о симметрии огромное участие принимала и математика, но для математики само учение о симметрии никогда не было методом, а скорее частной задачей или теорий групп или теории чисел. Значит ли это, что учение о симметрии не может быть применено как метод работы в других науках и в частности в самой математике? Конечно нет ...» [70, с. 181]. В самой работе рассматриваются известные в то время физические приложения теории симметрии. Статья заканчивается прозорливым выводом: «...кристаллографический метод в самом ближайшем будущем найдет себе широчайшее признание и употребление наряду с основными методами естествознания: математическим и философским умозрением, экспериментом и наблюдением» [70, с. 193]. И действительно, с 1929 по 1938 г. физику твердого тела охватило повальное увлечение симметрийным аппаратом, впоследствии охарактеризованное Е. Вигнером как «групповая чума».

Последовательно рассмотрим главные направления развития теории симметрии в трудах А. В. Шубникова и его последователей и тем самым оценим не только личный вклад А. В. Шубникова, но и перспективы развития каждой конкретной области его деятельности.

Знаменательным событием был выход в свет монографии А. В. Шубникова «Симметрия» [132], носившей подзаголовок: «Законы симметрии и их применение в науке, технике и прикладном искусстве». В этой монографии, как в фокусе, собраны все известные в то время достижения теории симметрии. Вначале (во введении) автор анализирует понятие равенства как основу геометрической закономерности и учения о симметрии, и вводит понятие симметрии: «Мы будем называть симметричным такой предмет, который состоит из геометрически и физически равных частей, должным образом расположенных относительно друг друга» [132, с. 8]. Здесь же анализируются отклонения от симметрии и высказывается предположение о том, что «изучение несовершества симметрии оказывает большую услугу разработке вопросов симметрии...». В небольшом параграфе «Симметрия как особый род геометрической закономерности» можно найти истоки по меньшей мере трех направлений, возникших намного позднее: принципа симметризации-диссимметризации, черно-белой симметрии и принципа построения «составных групп», в конечном итоге вылившихся в W-симметрию Копцика.

Автор последовательно рассматривает основные типы симметричных конфигураций начиная с односторонних розеток. По определению А. В. Шубникова: «Односторонней розеткой мы называем фигуру, в которой имеется хотя бы одна особенная полярная плоскость и хотя бы одна особенная точка» [132, с. 32]. По классификации Холзера—Шубникова—Бома, односторонние розетки имеют обобщенный символ G 20. Здесь имеет смысл остановиться на вопросах классификации типов групп симметрии, поскольку приведенное определение односторонней розетки уже содержит указание на классификационные признаки, основанные на особых элементах пространства. В неявной форме это учтено и А. В. Шубниковым в его «Симметрии», поскольку известное тогда множество фигур с ортогональной симметрией разделено на односторонние розетки, фигуры с особенной точкой (в том числе с особенной плоскостью и без нее), бордюры, ленты, стержни, сетчатые орнаменты, слои и федоровские группы. Процесс разработок классификационных принципов был начат А. Ниггли и расширен Н. В. Беловым и Н. Н. Нероновой. Однако, как отмечено Шубниковым [263—265], Холзером и Бомом, их схема оказалась неполной. Тогда ими было предложено классифицировать группы по размерности соподчиненных особенных элементов, инвариантных относительно преобразований групп симметрии. В конечном итоге подробная систематика групп ортогональной и черно-белой симметрии была построена Н. Н. Нероновой.

В следующем разделе А. В. Шубников изучает фигуры с особенной точкой, или, иными словами, точечные группы, символ которых G 30. При этом на примере куба автор вводит представление о симметричных разновидностях простых форм, что послужило толчком для Г. Б. Бокия к выводу 146 (193) физически различных простых форм кристаллов, а впоследствии к появлению 1403 структурногранных разновидностей простых форм, предложенных И. И. Шафрановским.

В границах точечных групп фактически выделены группы односторонних розеток G 20, двусторонних розеток G 320, точечные группы G 30и отдельно — предельные точечные группы, причем предельные группы симметрии использованы для классификации направленных величин. Здесь содержатся наметки для развития в дальнейшем теории симметрии векторов и тензоров, что оказало существенное влияние на многие вопросы физической кристаллографии и будет рассмотрено позже.

Следующий раздел монографии посвящен фигурам без особенной точки, в первую очередь бордюрам «как группам без особенных точек, но с особенной полярной плоскостью и единственной осью переноса» [132, с. 72]. Всего выведено 7 групп G 2I. Определив ленты G 321как «фигуры с особенной (полярной или неполярной) плоскостью, параллельно которой проходит ось переносов» [132, с. 76, 77], автор далее выводит 31 группу G 321и при этом отмечает, что существенно различных лент, рассматриваемых как стержневые группы, только 22, поскольку стержень — это «фигура без особенных точек и плоскостей, но с единственным особенным направлением» [132, с. 81]. Попутно в этом параграфе рассмотрена типология винтовых осей симметрии, включая винтовые оси с бесконечным элементарным переносом. На основе комбинирования дискретных и непрерывных элементов симметрии автором разработана типология предельных групп симметрии стержней, в том числе 7 групп, порожденных 5 предельными точечными и дискретной трансляцией; бесконечное разнообразие стержневых групп с непрерывной трансляцией и дискретной точечной и с обоими непрерывными порождающими элементами. Здесь же доказывается, что любое симметричное преобразование пространства может быть реализовано отражениями максимум в четырех плоскостях, которые сами по себе не обязаны быть реальными плоскостями симметрии. Это выводится из утверждения Г. В. Вульфа о главенствующей роли плоскости симметрии среди прочих симметричных преобразований или теоремы Болдырева. На основе этого фундаментального положения предлагается еще одно определение симметрии: «Симметричной называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях» [32, с. 97].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Н. Белов читать все книги автора по порядку

Н. Белов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Алексей Васильевич Шубников (1887—1970) отзывы


Отзывы читателей о книге Алексей Васильевич Шубников (1887—1970), автор: Н. Белов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x