Владимир Карцев - Ньютон

Тут можно читать онлайн Владимир Карцев - Ньютон - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Издательство; «Молодая гвардия», год 1987. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Карцев - Ньютон краткое содержание

Ньютон - описание и краткое содержание, автор Владимир Карцев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.

Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.

Ньютон - читать онлайн бесплатно полную версию (весь текст целиком)

Ньютон - читать книгу онлайн бесплатно, автор Владимир Карцев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Да, нужно признать сразу: многие исследователи считают — и справедливо, — что методы бесконечно малых у Ньютона не могли быть названы строгими. И тому есть причины, оправдание и даже похвала. В истории математики, как и в истории любой науки, бывали периоды, когда требование абсолютной точности доказательств тяжёлыми веригами опутывало творцов, стоящих на пороге великих достижений, сплошь да рядом связанных с необходимостью отрыва от земли, свободного полёта фантазии.

Таким строгим методом с античных времён и до времён Ньютона был «метод исчерпания» или «Архимедов метод». Этот метод, придуманный в IV веке до нашей эры Евдоксом, поддержанный Аристотелем и ставший фундаментом евклидовой геометрии, на первый взгляд, казалось бы, вовсе не исключал свободный полёт фантазии, прозрение, отгадку, интуицию. Всё это было возможно и даже приветствовалось. Но; нужно было каждый раз обязательно доказать, что полученный с их помощью результат отличается от истинного результата менее, чем на любую наперёд заданную величину. В противном случае результат не считался доказанным.

Жёсткие путы налагались этим правилом на математиков. Мало кто посмел бы рискнуть представить на суд учёных коллег новое слово своё, не подкреплённое доказательством методом исчерпания.

Попробовал Кавальери попытаться разработать алгоритм интегрирования, вывести свою «линейную сумму» — прототип интеграла, но ревнители строгости быстро отбили у него охоту вольничать.

И всё же! Именно Кавальери предложил новый, никак не доказуемый методом исчерпания метод «неделимых» математических «атомов» — бесконечно малых, но всё же не нулевых величин. Торричелли говорил о нём:

«Несомненно, геометрия Кавальери — это истинно царская дорога посреди запутанных зарослей математического терновника! Метод Кавальери следует самой природе. Жаль мне древней геометрии, которая — не зная или не желая знать учение о неделимых, оставила нашему веку в наследство лишь злополучное убожество!»

— Долой Евклида и Архимеда, да здравствует Кавальери! — повторяли с Торричелли молодые математики. А ревнители травили Кавальери, который, устав от борьбы, жаловался друзьям:

— Все эти придирки и споры, скорее философские, чем геометрические, для меня крайне мучительны… Считаю неправильным тратить время, которое ещё осталось мне для работы, на эти пустяки.

И не отвечал на критические нападки. Многие не поняли идей Кавальери или поняли их не так. Торричелли, например, счёл, что навсегда избавлен от обязанности представлять доказательства. Плотина была прорвана — и математики, впав в иную крайность, свободно жонглировали теперь нулями и бесконечностями, сходящимися и несходящимися рядами.

Неделимые были подозрительны. Их третировали ревнители строгости, их не признавали христианские богословы:

— Всякие науки истинны, кроме тех, что основаны на предположении, что непрерывное состоит из неделимых!

Богословы предупреждали:

— Если допустить, что мир состоит из материальных неделимых и пустоты, то получится, что духовный мир — это продукт чистой материи, что ересь.

Монах Кавальери, естественно, страшился таких обвинений. Он разъяснял:

— Я никогда не решался утверждать, что непрерывное составлено из неделимых, лишённых, конечно, какой бы то ни было толщины. Нельзя составить, как делает Кеплер, большие тела из мельчайших тел. Неделимые — это следы «текущей», «флюентной», движущейся плоскости, пересекающей данную линию, фигуру или тело и оставляющей на ней во все моменты времени след. Ведь время, как говорили пифагорейцы, состоит из отдельных моментов!

Возврат к кинетическим традициям древних философов-пифагорейцев вызывался расцветом механики и астрономии. Статическое интегрирование точек заменялось кинематическим интегрированием траекторий. Другими словами: линия перестала интересовать исследователей как таковая — линия стала следом движущегося реального тела, описанием реального процесса. И вот, изучая метод Валлиса, Ньютон понял, что он представляет собой гораздо более удобный и универсальный инструмент, чем считал сам Валлис. Ньютон понял, что валлисовские квадратуры есть частные случаи единого процесса, который мы по сегодняшней классификации назвали бы интегрированием — операцией, обратной дифференцированию. И более того. Если Валлис считал, что площади под кривыми есть статистические суммы бесконечно малых площадей, то Ньютон, следуя Барроу, воспринимал эти площади кинетически. Его площади описываются движущейся точкой. Он достиг непрерывности движения там, где Валлис видел ступеньки. Решающий шаг — описание кривых точкой, движущейся при определённых условиях. Возможно, этот шаг связан с лекциями Барроу. Именно идея движения принесла от Кавальери термин «флюксии» — «текущие», термин, которым Ньютон характеризовал свой метод. Движение предполагало введение новой переменной — времени и нового понятия — скорости, эквивалентного современной производной.

Ньютон считал, что любая кривая линия — это след движущейся точки. Элементы этого движения всё время меняются, причём в разной степени, находясь в то же время в некоторой связи между собой, определяемой уравнением. Если знать уравнение кривой, то можно в любой заданный момент времени при любом значении «x» узнать изменения или «флюксии» этих элементов.

В более позднем «Трактате о квадратуре кривых» Ньютон пишет:

«…Я рассматриваю математические величины не как состоящие из очень маленьких частей, но как описываемые с помощью непрерывного движения. Линии описываются и, следовательно, порождаются непрерывным движением точек, поверхности — движением линий, пространственные фигуры — вращением сторон, интервалы времени — непрерывным течением и т. д. Это порождение имеет место в природе вещей и может каждодневно наблюдаться по движению тел… Следовательно, рассматривая эти величины, которые равномерно увеличиваются и порождаются этим увеличением, становясь больше или меньше в соответствии с большей или меньшей скоростью, с которой они увеличиваются и порождаются, я искал метод определения величин из скоростей движения или приращений, при которых они порождаются; и, назвав эти скорости движением или приращения флюксиями, а порождённые величины флюентами, я постепенно пришёл к методу флюксий, который я и использовал в 1665 или 1666 году при решении задачи о квадратуре кривой».

Найти концепции движения достойное место в исчислении бесконечно малых помогало богатое физическое и геометрическое воображение Ньютона. Он легко представлял себе различные положения фигур, их возможные трансформации при перемещении, смещении тел, движений осей. Своим умственным взором он ясно видел, например, как круг превращается в эллипс, и видел при этом, какие изменения происходят в процессе подобного превращения в формулах. Он не смог пока найти алгоритма дифференцирования и каждый раз показывал красочную процедуру с конкретными кривыми. И чувствовал необходимость прийти к более общим выводам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Карцев читать все книги автора по порядку

Владимир Карцев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ньютон отзывы


Отзывы читателей о книге Ньютон, автор: Владимир Карцев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Виктор
23 июля 2023 в 00:01
Если бы преподаватели в школе прочли эту книгу .. ( в т.ч. "историки" )
x