Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
- Название:Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В 1997 г. я опубликовал в этом журнале статью "Геометрические интерпретации некоторых йордановых алгебр" и совместную с Н.Е.Марюковой (Панкиной) статью "Поверхности постоянной кривизны и геометрические интерпретации уравнений Клейна-Гордона, Sin-Гордона и Sh-Гордона". Как известно, первые два из этих уравнений имеют важное значение в физике, а второе из них определяет поверхности постоянной кривизны в 3-мерном евклидовом пространстве. Ш.Ш.Чжэнь доказал, что третье из этих уравнений имеет аналогичный смысл для 3-мерного псевдоевклидова пространства. В нашей работе показывается, что первое уравнение имеет аналогичный смысл для 3-мерного галилеева пространства. В работе изучаются все геометрические интерпретации этих трех уравнений.
В 2000 г. я опубликовал в этом журнале статьи "Шаровые модели эрмитовых пространств" и "Дифферецируемые функции в ассоциативных и альтернативных аллгебрах и гладкие поверхности в проективных пространствах над этими алгебрами".
В 2005 г. в этом журнале была опубликована моя статья "2-мерное алгебраическое многообразие с 27 прямолинейными образующими и 108 трисекантами и его связь с особой простой группой Ли максимальной размерности".
В 2006 г. я опубликовал в этом журнале статью "Углы голоморфии и секционная кривизна эрмитовых эллиптических плоскостей над телами и тензорными произведениями тел".
"Математики, астрономы и другие ученые исламской цивилизации и их труды"
Вернувшись летом 1994 г. из Стамбула, мы с женой вплотную занялись подготовкой английского аналога книги "Maтематики и астрономы мусульманского средневековья и их труды (VIII - XVIII)" (МАМС), изданной в 1983 г. в Москве.
Работа началась с того, что жена напечатала на компьютере английский перевод того материала из МАМС, который она могла сделать самостоятельно: перевод имен ученых, арабских, персидских и турецких названий сочинений с русской транскрипции на транскрипцию, принятую в англоязычной литературе, перевод названий городов, библиотек и профессий ученых, внесение в текст библиотечных шифров рукописей.
После этого я начал писать полный английский текст книги, внес необходимые исправления и добавил новый материал, который я собирал начиная с 1983 г.
Сотрудники IRCICA добавили много нового материала о турецких ученых и ученых Оттоманской империи. В связи с этим я предложил генеральному директору IRCICA Э.Ихсаноглу быть одним из авторов этой книги.
Получилась совершенно новая книга, которой мы дали название "Математики, астрономы и другие ученые исламской цивилизации и их труды (VII - XIX вв.)".В этой книге около полутора тысяч статей об ученых, время жизни которых известно и около 300 статей об ученых, время жизни которых неизвестно.
Нам удалось установить время жизни некоторых ученых, для которых оно раньше было неизвестно, эти статьи перенесены в основную часть книги. Некоторых ученых, известных под разными именами, нам удалось идентифицировать.
Д.А.Кинг, в своем обзоре научных рукописей Каирской Национальной библиотеки начал список ученых с халифа Али ибн Аби Талиба, двоюродного брата и зятя основателя ислама Мухаммада (Магомета). Мы также начали список ученых с халифа Али. При этом я обнаружил, что кроме каирской рукописи сочинения Али о календаре, описанной Кингом, имеется еще две рукописи этого сочинения в Ташкенте. Ашраф Ахмедов, который в то время был директором Международного института среднеазиатских исследований ЮНЕСКО в Самарканде, сообщил мне, что обе ташкентские рукописи являются персидскими переводами текста каирской рукописи и прислал мне текст одной из этих рукописей. Я с помощью М.Багери прочел эту рукопись.
Кроме халифа Али, который жил в VII века, я добавил в начале книги еще несколько серийских и арабских ученых этого века. Мы расширили список ученых и в другую сторону, закончив учеными XIX в.
Я внес в книгу авторов сочинений по математической географии, отсутствовавших в МАМС, а также авторов ташкентских рукописей о математическом атомизме, о которых я рассказывал на симпозиуме в Стамбуле.
Ихсаноглу прислал мне "Историю оттоманской астрономической литературы", "Историю оттоманской математической литературы", "Историю оттоманской географической литературы", вышедшие в 1997, 1998, 2000 гг. Эти книги содержат много нового материала, который мы использовали в нашей книге, опубликованной в Стамбуле в 2003 г.
Трактат халифа Али о лунном календаре
Каждая из рукописей халифа Али, и каирская и обе ташкентские, состоит из одной страницы. В верхней части каирской рукописи написаны восемь арабских букв, которые, если заменить их латинскими буквами, происходящими от тех же букв финикийского алфавита, будут иметь вид AECGDBFD. Одна из ташкентских рукописей называется "Исчисление AECGDBFD".
В сочинении предлагается правило определения дней недели начал мусульманских месяцев. Мусульманский календарь лунный, состоит из 12 лунных месяцев и содержит 354 или 355 дней. На 100 солнечных лет приходится 103 лунных.
В середине каирской рукописи изображен круг, разделенный на 8 секторов. В каждом секторе написана одна из букв A, E, C, G, D, B, F, D, а также одна арабская цифра, соответствующая числовому значению этой буквы (A=1, B=2, C=3, D=4, E=5, F=6, G=7). То, что буквы и цифры написаны в круге, указывает на их циклическое повторение. Так как халиф Али жил в VII веке, а арабские цифры появились только в IX веке, ясно, что эти цифры были добавлены позднейшими переписчиками.
Под кругом написаны 7 названий дней недели от воскресенья до субботы, а под каждым названием дня написан его номер : под воскресеньем -1 под субботой -7. По-видимому, в оригинале вместо цифр стояли буквы от А до G.
Справа и слева от круга написаны названия 12 мусульманских месяцев и рядом с ними - буквы G,B,C,E,F,A,B,D,E,G,A,C и соответственные цифры.
Эти буквы и цифры указывают дни недели начал месяцев в предположении, что начало года - суббота. Число дней нечетных месяцев равно 30, число дней четных месяцев равно 29, за исключением последнего 12-го месяца, число дней которого бывает 29 или 30.
В нижней части каирской рукописи находится текст правила, строки которого написаны косо снизу вверх. В книге Кинга каирская рукопись воспроизведена не полностью, без ее нижней части косых строк.
Текст всех трех рукописей начинается словами: "Правило, принадлежащее нашему учителю имаму Али ибн Аби Талибу ".
Как видно из ташкентских рукописей, правило определения дней недели состоит в следующем: из номера года мусульманского календаря "отбрасываются восьмерки и рассматривается остаток", т.е. рассматривается остаток от деления номера года на 8. Если остаток равен n, берется n-я из букв A,E,C,G,D,B,F,D складывается с буквой месяца, т.е. складываются числовые значения букв. Если сумма оказывается меньше или равной 7 она определяет день недели начала этого месяца. Если сумма оказывается больше 7, из нее вычитается 7 и остаток определяет день недели начала месяца. На языке современной математики эта операция называется "сложением по модулю 7".
Читать дальшеИнтервал:
Закладка: