Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Тут можно читать онлайн Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пространства, времена, симметрии. Воспоминания и мысли геометра
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание

Пространства, времена, симметрии. Воспоминания и мысли геометра - описание и краткое содержание, автор Борис Розенфельд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.

Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)

Пространства, времена, симметрии. Воспоминания и мысли геометра - читать книгу онлайн бесплатно, автор Борис Розенфельд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В трактате "Плоские геометрические места"Аполлоний рассматривал преобразования подобия, инверсии относительно окружностей кругов, и более сложные круговые преобразования. В трактате Аполлония "Касания" решаются задачи о проведении окружности, касающейся трех объектов, которые могут быть точками, прямыми и кругами. По-видимому, при решении наиболее сложных из этих задач Аполлоний пользовался инверсией относительни круга.

В сочинениях Аполлония "Вставки" и "Общий трактат" исложены решения геометрических задач равносильных алгебраическим уравнениям высших порядков.

Из остальных математических сочинений Аполлония упомяну "Сравнение додекаэдра и икосаэдра", комментарии Гипсикла к которому присоединены к 13 книгам "Начал" Eвклида в виде XIV книги.

Публикации МЦНМО

В 2003 г. в издательстве "Московский центр непрерывного математического образования"(МЦНМО) была опубликована книга "Геометрия групп Ли. Симметрические, параболические и периодические пространства", написанная мной и М.П.Замаховским.

В 2004 г. была опубликована моя книга "Аполлоний Пергский", являющаяся научной биографией великого геометра.

Находится в печати русский оригинал книги "Эли Картан", написанный М.А.Акивисом и мной, к которой добавлены мои русские переводы речи Э.Картана на праздновании его 70-летия, статьи Э.Картана, посвященной 100-летию со дня рождения Софуса Ли, и французского оригинала лекции Картана о влиянии Франции на развитие математики.

Готовится к печати мой полный русский перевод "Коническх сечений" Аполлония с подробными комментариями.

Устойчивость материальных структур

В главах о симплектической геометрии, в книгах по геометрии групп Ли я изложил результаты моих дальнейших размышлений об устойчивости материальных структур. Более подробно я изложил эти результаты в 2005 г. в журнале "Философские исследования".

Классическими устойчивыми материальными структурами являются механический и электромагнитный осцилляторы, внутреннее которых выражается одинаковыми дифференциальными уравнениями.

Идею о том, что атом водорода также можно рассматривать как электромагнитный осциллятор, я впервые опубликовал в 1958 г. в Ученых записках Коломенского пединститута. При этом роль конденсатора этого осциллятора играет "позитроний", состоящий из электрона, находящегося вне протона, и из позитрона, находящегося внутри протона, а роль катушки самоиндукции играет нейтрон, входящий в состав протона.

Физик К.Шарнгорст, с которым я обсуждал эту проблему, сообщил мне, что Нобелевский лауреат М.Гел-Манн в 1960-х годах установил, что внутри нейтрона находятся три "кварка", причем электрический заряд одного из них равен 2/3 заряда электрона, а электрический заряд каждого из двух остальных кварков равен 1/3 заряда позитрона.

Из этого я сделал вывод, что кварки можно рассматривать как сердечники катушек самоиндукции электромагнитного осциллятора, и внутреннее движение в атоме водорода состоит в том, что электрон падает на нейтрон, входит в него и движется по винтовой линии на поверхности одного из кварков, а затем возвращается в исходное положение, после чего это колебание повторяется снова, а позитрон движется по винтовым линиям на поверхностях сначала одного, а потом другого кварка, выходит из нейтрона, а затем падает на нейтрон и возвращается в исходное положение, и это колебание также повторяется снова. В отличие от классических осцилляторов энергия движения в атоме водорода не рассеивается в пространстве, поэтому колебания электрона и позитрона в атоме водорода не затухают. Дифференциальным уравнением этого движения является уравнение Шредингера.

При соединении 4 атомов водорода в один атом гелия два из 4-х позитрониев этих атомов превращаются в кванты света. Выделение энергии при этом процессе определяет излучение Солнца и лежит в основе водородной бомбы.

В статье в журнале "Философские исследования" рассматриваются и другие устойчивые материальные структуры, в частности, живые организмы и различные виды человеческого общества.

Добавления к моим книгам

В 2004 г, в журнале "Suhayl" я опубликовал добавление и исправления к моей книге с Ихсаноглу.

В 2006 г. в сборнике Научно-исследовательского института математики и механики при Казансом университете добавление и исправление к моей книге с М.П.Замаховским,

ЧАСТЬ ВТОРАЯ. МЫСЛИ

Глава 1 . ПРОСТРАНСТВА И ГРУППЫ Пространства

В математике пространствами называются множества элементов, обычно именуемых точками, в которых выделены те или иные подмножества. В аффинных и проективных пространствах выделенные подмножества называются прямыми линиями, плоскостями и гиперплоскостями, в конформных и псевдоконформных пространствах - окружностями, сферами и гиперсферами, в топологических пространствах - замкнутыми множествами, а их дополнения - открытыми множествами. Выделенные подмножества удовлетворяют определенным условиям или аксиомам.

Если в множестве точек всяким двум точкам поставлено в соответствие число, удовлетворяющее определенным условиям, и называемое расстоянием между двумя точками, множество называетсз метрическим пространством. Два метрических пространства, между которыми установлено взаимно однозначное соответствие, сохраняющее расстояние, называются изометричными.

Точки пространств обычно определяются несколькими числами или элементами более сложных систем, называемых алгебрами. Эти числа или элементы называются координатами точек. Число независимых координат точек пространства называется размерностью пространства. Пространство размерости n называется n-мерным.. В аффинных и проективных пространствах можно ввести метрику с помощью квадратичных или эрмитовых форм от координат точек; полученные пространства называютая квадратичными и эрмитовыми евклидовыми, псевдоевклидовыми, неевклидовыми и симплектическими пространствами.

Аффинные, проективные, конформные и псевдоконформные пространства называются инцидентностными. Евклидовы, псевдоевклидовы и неевклидовы пространства являются метрическими.

Представление о пространстве как о множестве точек сложилось только в XIX-XX веках. В древности считалось, что линии, поверхности и пространство не состоят из точек, а только являются "геометрическими местами", в которых находятся точки.

Аксиомы топологического пространства очень просты: 1) все пространство - замкнутое множество, 2) "пустое множество", т.е. множество, не содержащее ни одной точки, также считается замкнутым, 3) объединение конечного числа замкнутых множеств замкнуто, 4) пересечение любой совокупности замкнутых множеств замкнуто.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Розенфельд читать все книги автора по порядку

Борис Розенфельд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пространства, времена, симметрии. Воспоминания и мысли геометра отзывы


Отзывы читателей о книге Пространства, времена, симметрии. Воспоминания и мысли геометра, автор: Борис Розенфельд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x