Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
- Название:Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В случае, когда замкнутым считается любое множество точек, пространство называется дискретным, в случае, когда замкнутыми множестами считаются только все пространстно и пустое множество, пространство называется тривиальным.
В случае, если в топологическом пространстве задана такая система открытых множеств, что любое открытое множество является объединением множеств этой системы, то множества этой системы называются окрестностями. Окрестность, содержащая точку А, называется окрестностью точки А.
Наиболее важными топологическими пространствами являются хаусдорфовы пространства, в которых выполнены еще две аксиомы: 5) точки замкнуты, 6) для всяких двух точек существуют непересекающиеся окрестности этих точек.
Два топологические пространства, между которыми установлено взаимно однозначное соответствие, причем замкнутые множества одного пространства соответствуют замкнутым множествам другого, называются гомеоморфными пространствами.
Однозначное преобразование одного топологического пространства в другое, переводящее замкнутые множества в замкнутые, называется непрерывным преобразованием.
Группы
Группой называется такое множество элементов любой природы, в котором всяким двум элементам А и В поставлен в соответствие третий элемент С=АВ, причем:
для всяких трех элементов A, B, C выполняется ассоциативный закон (AB)C=A(BC),
существует такой элемент I, что для каждого элемента А !А=А!=А, для каждого элемента А существует элемент A', для которого АA'=A'А=I. Элемент AB называется произведением элементов A и B, элемент I называется единицей группы, элемент A' называется обратным элементом для элемента A.
В случае, когда группа коммутативна, т.е. для всяких двух элементов А и В выполняется равенство АВ=ВА, групповая операция обычно называется сложением и обозначается С=А+В, роль eдиницы играет 0, а роль элемента обратного для А играет противоположный элемент -A. Если в множестве определены две операции - сложение и умножение, связанные дистрибутивным законом А(В+С)=АВ+АС, (А+В)С=АС+ВС, причем все множество со сложением и все множество без 0 с умножением являются коммутативными группами, то такое множество называется полем. Вещественные числа образуют поле R, комплексные числа образуют поле С Если в определении поля отказаться от коммутативности умножения, мы получим тело или косое поле. Примером тела является тело Н кватернионов а+bi+cj+dk, где i2=j2=-1, ij = -ji =k. Eсли в определении поля или тела отказаться от требования, чтобы множество без нуля являлось группой, мы получим кольцо. Два не нулевых элемента кольца, произведение которых равно 0, называются делителями нуля.
Две группы, два поля или два кольца, между которыми установлено взаимно однозначное соответствие, сохраняющее их операции, называются изоморфными. Если между двумя гпуппами G и H установлено однозначное, но не взаимно однозначное соответствие, сохраняющее групповую операцию, группы называются гомоморфными. В этом случае элементы первой группы, соответствующие единице второй, образуют подгруппу N, называемую инвариантной подгруппой или нормальным делителем. Группа H называется фактор-группой группы G по ее подгруппе N и обозначается G/N Группа, в которой нет инвариантных подгрупп, называется простой группой. Аналогично определяется гомоморфизм колец, в этом случае роль инвариантных подгрупп играют идеалы колец. Изоморфные отображения групп, полей и колец на себя называются автоморфизмами. Группы в которых имеются цепочки вложенных друг в друга инвариантных подгрупп, причем все фактор-группы каждой инвариантной подгруппы по следующей коммутативны, называются разрешимыми группами.
Линейные пространства и алгебры
Коммутативная группа, в которой определено умножение на вещественные числа, причем имеют место дистрибутивный закон умножения относительно сложения и ассоциативный закон умножения, называется линейным или векторным пространством. Элементы этого пространства называются векторами, а вещественные числа - скалярами. Размерность этого пространства равна числу линейно независимых векторов. Принимая эти векторы за базисные, мы можем представить любой вектор в виде линейной комбинации базисных векторов. Коэффициенты такого разложения являются координатами векторов в данном базисе.
Скалярная линейная функция от элементов линейного пространства записывается в виде j =ux, где х - вектор данного пространства, u - ковектор, т.е. вектор пространства, сопряженного с данным, выражение ux называется сверткой ковектора u и вектора х.
Скалярная полилинейная функция Ф р векторов и q ковекторов определяет тензор р-й ковалентности q-й валентности, коэффициенты функции Ф называются координатами тензора.
Функция Ф при р=2, q=0 называется билинейной формой.
Автоморфизмами линейного пространства являются его линейные преобразования x'=Ax, где А - линейный оператор.
Линейные операторы определяют тензоры, для которых р=q = 1.
Кольцо, являющееся линейным пространством при условии коммутативности умножения в кольце и умножения на скаляры в линейном пространстве, называется алгеброй или системой гиперкомплексных чисел.
Прямой суммой А+В двух алгебр А и В размерностей m и n называется алгебра размерности m+n, базис которой состоит из базисов алгебр А и B, причем все произведения базисных элементов разных прямых слагаемых равны 0.
Тензорным произведением АВ тех же двух алгебр А и В называется алгебра размерности mn, базисные элементы которой - произведения базисных элементов алгебр А и B, причем базисные элементы тензорных сомножителей коммутируют между собой.
Примерами алгебр являются:
алгебра С' двойных чисел а+be, e2= + 1, изоморфная прямой сумме R+R двух полей R,
алгебра М(п) вещественных матриц n-го порядка,
алгебра Н' псевдокватернионов a+bi+ce+df, i2=-1, e2= + 1, ie=-ei=f, изоморфная алгебре М(2),
алгебры СМ(п) и НМ(п) комплексных и кватернионных матриц n-го порядка, являющиеся тензорными произведениями алгебры M(n) на, соответственно, алгебру С или Н,
алгебра Cо дуальных чисел a+be, e2=0,
алгебра Но полукватернионов a+bi+ce+dh, i2=-1, e2=0, ie =-ei=h.
Алгебра A(n) альтернионов или чисел Клиффорда порядка n имеет размерность 2n-1, ee базис состоит из 1, i1,i2,...,in-1 для которых ik2= -1, и произведений различных одноиндексных элементов, причем ihik=-ikih. Aлгебры А(п) при n = 1, 2, 3, 4, 5, 6, 7, 8 изоморфны, соответственно, полям R и С, телу Н и алгебрам Н + Н, HM(2), CM(4), М(8) и М(8)+М(8).
Заменяя в определении алгебры А(п) k элементов ih элементами еh для которых eh2= +1, мы получим алгебру A(n-k, k) псевдоальтернионов порядка n и индекса k. Алгебры А(1,1) и А(2,1) изоморфны, соответственно, алгебрам C' и H'.
Заменяя в определении линейного пространства поле R скаляров полем C или телом H мы получим комплексное или кватернионное линейное пространство.
Читать дальшеИнтервал:
Закладка: