Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Тут можно читать онлайн Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пространства, времена, симметрии. Воспоминания и мысли геометра
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание

Пространства, времена, симметрии. Воспоминания и мысли геометра - описание и краткое содержание, автор Борис Розенфельд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.

Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)

Пространства, времена, симметрии. Воспоминания и мысли геометра - читать книгу онлайн бесплатно, автор Борис Розенфельд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В каждой точке дифференцируемого многообразия можно определить касательное линейное пространство. Координаты векторов этого простран­ства являются дифференциалами координат точек многообразия.

Если в касательном пространстве каждой точки n-мерного диф­ференцируемого многообразия определено скалярное произведение n- мерного евклидова пространства или n-мерного пседоевклидова пространства индекса k, мы получим, соответственно, n-мерное риманово пространство или псевдориманово пространство индекса k. В римановых и псевдоримановых пространствах можно определить длину линии, угол между пересекающимися линиями, геодезические (кратчайшие) линии и площадь участка двумерной поверхности.

Если из точки А риманова пространства выходят геодезические линии АВ и АС, и углы геодезического треугольника АВС при его вершинах обозначены теми же буквами A, B, C, то предел отношения разности А+В+С-п, где углы А,В,С измерены в радианной мере, к площади треугольника АВС при стремлении точек В и С к А называется секционной кривизной риманова пространства в точке А в данном двумерном направлении.

Эллиптическое и гиперболическое пространства являются частными случаями риманова пространства. Так как площадь всякого прямолинейного треугольника АВС в эллиптическом пространстве, получаемом из гиперсферы радиуса r, равна r (A+B+C-п), эллиптическое пространство является римановым пространством постоянной положительной кривизны 1/r 2. Taк как площадь всякого прямолинейного треугольника АВС в гиперболическом пространстве, получаемом из гиперсферы мнимого радиуса r, равна r (A+B+C-pi),, гиперболическое пространство является римановым пространством постоянной отрицательной кривизны -1/q 2.

Aналогично определяется секционная кривизна в двумерном направлении в псевдоримановом пространстве.

Если в дифференцируемом многообразии для всяких двух бесконечно близких точек определено аффинное отображение касательных пространств в этих точках, многообразие называется пространством аффинной связности.

Если в римановом или псевдоримановом пространстве или в пространстве аффинной связности отражение от каждой точки по геодезическим линиям не изменяет расстояний между точками или сохраняет аффинную связность, пространство называется симметрическим пространством.

Геометрии вещественных евклидовых, псевдоевклидовых, неевклидовых, симметрических, римановых и псевдоримановых пространств посвящены многие главы моих книг 1955, 1966, 1969 и 1997 гг. При этом особое внимание я уделял интерпретациям неевклидовых пространств, так как считаю интерпретации "стереоскопическим зрением геометра", ибо свойства неевклидовых пространств, которые отличаются от свойст евклидова пространства и ускользают от нашего внимания в одних интерпретациях, хорошо видны в других интерпретациях.

Комплексные и кватернионные пространства

Комплексное квадратичное евклидово пространство определяется так же, как вещественное. Это же пространство является комплексной формой всех вещественных псевдоевклидовых пространств той же размерности. В случае комплексного и кватернионного эрмитовых евклидовых пространств скалярный квадрат (а,а) является вещественной положительно определенной эрмитовой формой, а в случае комплексного и кватернионного эрмитовых псевдоевклидовых пространств индекса k скалярный квадрат (а,а) является вещественной знаконеопределенной эрмитовой формой индекса k.

Расстояние между точками А и В эрмитова евклидова или псевдоевклидова пространства равно квадратному корню из скалярного квадрата (а,а) вектора а=АВ. Нетрудно проверить, что n-мерные комплексное и кватернионное эрмитовы евклидовы пространства изометричны, соответственно, 2n-мерному и 4n-мерному вещественным евклидовым пространствам, а комплексное и кватернионное эрмитовы псевдоевклидовы пространства индекса k изометричны, соответственно, 2n-мерному вещественному псевдоевклидову пространству индекса 2k и 4n-мерному вещественному псевдоевклидову пространству индекса 4k.

Движениями эрмитовых евклидовых и псевдоевклидовых пространств называются аффинные преобразования этих пространств, сохраняющие расстояния между точками.

Если а и b - два вектора комплексного или кватернионного эрмитова пространства, изображаемые в вещественных пространствах ортогональными векторами, то их скалярное произведение (a,b) равно ucos j, где u в случае комплексного пространства - мнимая единица i, a в случае кватернионного пространства - кватернион bi +cj +dk единичного модуля, а j называется углом голоморфности. Угол j равен 0, когда векторы а и b принадлежат одной прямой линии, и равен п/2, когдя эти векторы принадлежат одной нормальной n-цепи, т.е. множеству точек с вещественными координатами или тому, что получается из этого множества точек при движении пространства. Двумерные площадки, для которых j=0, называются голоморфными, а двумерные площадки, для которых j=n/2, называются антиголоморфными.

Аналогично, угол голоморфии и голоморфные и антиголоморфные двумерные площадки определяются в комплексных и кватернионных эрмитовых псевдоевклидовых пространствах.

Точки n-мерных комплексного и кватернионного эрмитовых эллиптических пространств можно представить прямыми линиями (n + 1)- мерных эрмитовых евлидовых пространств над полем С или телом Н, проходящими через одну точку, причем расстояние d между точками равно произведению угла между прямыми на число r, связанное с векторами а и b, направленными по прямым, представляющим эти точки соотношениями R 2= (a,a) = (b,b). Поэтому cos 2(d/r) = (a,b)(b,a)/(a,a)(b,b). Отсюда следует, что комплексное и кватернионное эрмитовы эллиптические пространства можно определить как проективное пространство над полем С или телом Н, в котором задано расстояние d между точками А и В, представленными векторами а и b, по указанному равенству. Правая часть этого равенства равна двойному отношению точек А и В и точек пересечения полярных гиперплоскостей этих точек относительно эрмитовой гиперквадрики (x,x)=0 с прямой АВ.

Аналогично определяются комплексные и кватернионные эрмитовы гиперболическое, псевдоэллиптические и псевдогипербопические пространства, но точки этих пространств изображаются точками одной из двух областей, на которые эрмитова гиперквадрика (x,x)=0 делит проективное пространство.

Эрмитова гиперквадрика (x,x)=0, мнимая в случае эллиптических пространств, называется абсолютом пространства. В случае псевдоэллиптических пространств, указанное двойное отношение, как и в случае эллиптических пространств, равно cos 2(d/r). В случае гиперболических и псевдогиперболических пространств это двойное отношение равно ch 2(d/q), где q 2=(a,a) = (b,b).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Розенфельд читать все книги автора по порядку

Борис Розенфельд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пространства, времена, симметрии. Воспоминания и мысли геометра отзывы


Отзывы читателей о книге Пространства, времена, симметрии. Воспоминания и мысли геометра, автор: Борис Розенфельд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x