Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
- Название:Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В главе "Пенсильвания"я подробно описал историю публикации английского перевода математического трактата Улугбека с его арабским текстом в статье, написанной мной вмесе с Я.П.Хогендайком.
В 2000 г. в родном городе ал-Каши Кашане состоялся международный конгресс, повященный 600-летию ал-Каши. На этом конгрессе М.М.Рожанская прочла мой доклад о трактатах ал-Каши и Улугбека об определении синуса 1о.
Гипергеометрические названия степеней в Европе
Выше я упоминал, что названия степеней в "Арифметике" Диофанта были аддитивные, т.е.квадрато-кубом он называл 5-ю степень (5=2+3).
Такие же названия степеней применяли ат-Туси, ал-Каши и другие математики, писавшие на арабском языке.
Однако индийские математики применяли более сложную систему названий степеней: для тех степеней, которые можно представить как произведения чисел 2 и 3, они пользовались мультипликативными названиями, т.е. называли квадрато-кубом не 5-ю, а 6-ю степень (2.3=6), но для тех степеней, которые нельзя представить в виде произведений чисел 2 и 3, они пользовались аддитивными названиями с добавлением специального термина, указывающего, что это название аддитивное.
Французский историк науки Поль Таннери обнаружил один случай применения мультипликативных названий у греков - он нашел текст современника Диофанта александрийского христианского епископа Анатолия, который называл 5-ю степень первым невыразимым (protos alo- gos), 6-ю степень квадрато-кубом, а 7-ю степень - вторым невыразимым (deuteros alogos).
Текст, обнаруженный Таннери, позволил мне проанализировать названия степеней у итальянских и немецких алгебраистов эпохи Возрождения. Итальянский математик Лука Пачоли (1454-1514) в своей книге "Сумма [знаний] по арифметике, геометрии, отношениям и пропорциональности" называл квадрат censо, куб - cubo, 4-ю степень - censo de censo, 5-ю степень - primo relato, 6-ю степень -censo de cubo, 7-ю степень - secondo relato и т.д.
Джироламо Кардано (1501-1576) в своем "Великом искусстве алгебраических правил" пользовался аналогичными латинскими названиями, вместо слова relato он писал relatum. Я в статьях и в книге "История математики с древнейших времен" объяснял эти термины как искаженные переводы термина alogos. Это слово можно перевести не только как "невыразимое", но и как "не-отношение". По-видимому, первоначально это слово было переведено в его втором значении словами irrelato и irrelatum, которые впоследствии потеряли приставку ir-.
От итальянских алгебраистов, которые, следуя арабам, называли неизвестную величину "вещью" (cosa), aлгебра попала в Германию, где ее стали называть Coss - от итальянского слова cosa, поэтому немецких алгебраистов той эпохи называют коссистами. Как и итальянские алгебраисты, коссисты пользовались мультипликативной системой названий степеней. Они называли неизвестную величину Res ("вещь" на латыни), квадрат - Zensus, куб - Cubus, 4-ю степень - Zеnsus Zensi, 5-ю - Sursolidum, 6-ю Zensus Cubi, 7-ю - Bissursolidum и далее все "невыразимые" степни - словом sursolidum с добавлением сокращений латинских числительных ter-, quadr-, quint- и т. д. Слово sursolidum первоначально имело вид surdesolidum, от латинских слов surdus - "глухой", которым часто переводили греческое слово alogos (в частности, для обозначения иррациональных величин и чисел), слово solidum - "тело" появилось, по-видимому, по аналогии со словом "куб". Впоследствии слово sursolidum стали понимать как "сверхтело" и в латинских текстах заменять его словом supersolidum.
Эта "гипергеометрическая" терминология привела самого крупного коссиста Михаэля Штифеля (1487-1567) к идее многомерного пространства. В своей обработке книги "Coss" Христофа Рудольфа Штифель предложил "выйти за пределы куба" и, называя куб "телесной точкой", рассматривать далее "телесную линию", "телесный квадрат", "телесный куб" и т. д.
Сферическая геометрия и тригонометрия в Европе
В моей книге "История неевклидовой геометрии" я подробно рассмотрел историю сферической геометрии и тригонометрии в Европе.
Теорему косинусов сферической тригонометрии, которая в трудах индийских и арабских астрономов встречалась только в астрономических правилах, впервые сформулировал как математическую теорему Региомонтан (1436 -1476) в "Пяти книгах о треугольниках всякого рода". Чертеж Региомонтана к этой теореме совпадает с чертежом ал-Баттани в его астрономических таблицах. Поэтому европейцы приписывали эту теорему ал-Баттани и называли ее "теоремой Альбатегния". Эта теорема для сферического треугольника АВС со сторонами а, b, с выражается формулой cosa = cosb cosc + sinb sine cos A.
Двойственную терему косинусов, выражаемую для того же сферического треугольника формулой
cosA = -cosBcosC + sinBsinCcosa,
впервые доказал Франсуа Виет (1548-1603 ) в его "VIII книге ответов на различные математические вопросы".
Площадь сферического треугольника АВС, выражаемая формулой
S =r2(A+B+C-n),
где углы А, В и С выражены в радианной мере, нашел Альбер Жирар (15951632) в работе "О мере поверхности сферических треугольников и многоугольников".
Далее в "Истории неевклидовой геометрии" я рассматривал работы по сферической тригонометрии Леонарда Эйлера (1707-1783) и математиков его школы.
Поверхности второго порядка
Выше мы упоминали, что Архимед сжигал римские корабли используя свойства параболоида вращения. Он определил параболоиды и эллипсоиды вращения и полости двуполостных гиперболоидов вращения в трактате "О сфероидах и коноидах", где называл эллипсоиды вращения сфероидами, параболоиды вращения - прямоугольными коноидами, а полости гиперболоидов вращения - тупоугольными коноидами. Однополостные гиперболоиды вращения впервые рассматривал Дж. Валлис (1616 -1703), который называл их цилиндроидами.
В статье о геометрических работах Эйлера я изучал вопрос об открытии Эйлером поверхностей второго порядка общего вида. Эйлер рассматривал поверхности второго порядка, получаемые сжатием из поверхностей вращения, и гиперболический параболоид, который нельзя получить таким образом. Эти поверхности были впервые описаны Эйлером во 2-м томе "Введения в анализ бесконечных".
Современные названия этих поверхностей были предложены Гаспаром Монжем (1746-1818).
Теория параллельных линий в Европе и неевклидова геометрия
В "Истории неевклидовой геометрии" я подробно рассматривал попытки доказательств V постулата Евклида европейскими математиками, из которых отмечу доказательства математиков XIV в. Леви бен Гершона из Монпелье и Альфонсо из Вальядолида, написанные на иврите под несомненным влиянием арабских трактатов Ибн ал-Хайсама, и доказательство Джона Валлиса на основе явно сформулированного им постулата о том, что для всякой фигуры можно построить подобную фигуру любых размеров.
В той же книге я изложил историю открытия гиперболической геометрии Карлом Фридрихпм Гауссом (1777 -1855), Николаем Ивановичем Лобачевским (1792 -1856) и Яношем Бойяи (1802-1869), историю интерпретаций этой геометрии Эудженио Бельтрами (1835-1900), Феликсом Клейном (1849-1925) и Анри Пуанкаре (1854 - 1912) и историю развития эллиптической геометрии в работах Бернгарда Римана (1826-1866), Вильяма Кингдона Клиффорда (1845-1879) и Ф.Клейна, а также историю обобщений этих геометрий.
Читать дальшеИнтервал:
Закладка: