Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
- Название:Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лобачевский обнаружил связь между тригонометрией в открытом им пространстве и сферической тригонометрией. Он придавал этой связи очень важное значение, так как видел в ней доказательство непротиворечивости открытой им геометрии. Я специально исследовал этот вопрос и установил, что причина связи состоит в том, что гиперболическая геометрия имеет место на сфере мнимого радиуса в псевдоевклидовом пространстве.
Геометрические преобразования в Европе
В "Истории неевклидовой геометрии" я подробно рассматривал историю геометрических преобразований в Европе - развитие проективной геометрии в трудах Жирара Дезарга (1591 -1661), Блеза Паскаля (1623 - 1662), Исаака Ньютона (1643 -1727), Жана Виктора Понселе(1788 -1867),
Августа Фердинанта Мебиуса (1790 -1868), развитие аффинной геометрии в трудах Алексиса Клода Клеро (1713-1765), Л.Эйлера и А.Ф.Мебиуса, развитие конформной геометрии в трудах Л.Эйлера, Жана Лерона Даламбера(1717 -1783), Мебиуса, Жозефа Лиувилля (1809 - 1882).
Я рассмотрел также "Эрлангенскую программу" Ф.Клейна, согласно которой всякая геометрия определяется своей группой преобразований, и "Теорию групп преобразований" Софуса Ли (1842 - 1899), в которой было основано учение о группах Ли.
В научной биографии Эли Картана (1869 - 1951) я подробно изучал развитие теории групп Ли и связанных с ней теории симметрических Римановых пространств и пространств аффинной связности, а также других обобщенных пространств.
Геометрическая алгебра в Европе и многомерная геометрия
В "Истории неевклидовой геометрии" я рассмотрел различные виды геометрической алгебры европейских математиков. Это, прежде всего, исчисление треугольников в "Первых замечаниях к видовой логистике" Ф.Виета, oказавшее сильнoe влияние на возникновение аналитической геометрии Пьера Ферма (1601-1665).
К геометрической алгебре относится исчисление отрезков Рене Декарта (1596-1650), связанное с его аналитической геометрией.
Дальнейшим развитием принципов геометрической алгебры была идея Готфрида Вильгельма Лейбница (1646-1716) о "геометрии положения", оказавшая исключительное влияние на появление и развитие топологии в работах Эйлера, Римана и Пуанкаре, на развитие проективной геометрии в работах Лазара Карно (1753-1823) и Христиана фон Штаудта (1798-1867) на возникновение векторной алгебры и многомерной геометрии в "Учении о протяжении" Германа Грассмана (1809-1877).
Другими направлениями развития геометрической алгебры были теория Симона Стевина (1548-1620) сложения сил в механике и алгебра векторов и кватернионов у Вильяма Роуана Гамильтона (1805-1865).
В той же книге я проследил возникновение и развитие многомерной геометрии. В неявном виде эта геометрия появилась еще в работах Михаэля Васильевича Остроградского (1801-1862) и Карла Густава Якоба Якоби (1804-1851) о кратных интегралах. Таким образом, Остроградский, который не понял открытия Лобачевского и написал отрицательный отзыв на его первую публикацию, сам оказался причастным к расширению понятия о пространстве. Я рассмотрел работы Грассмана, Людвига Шлефли (1814-1895) и Германа Вейля (1885-1955) по многомерной евклидовой геометрии, работу Римана, в которой была основана многомерная геометрия искривленного пространства, его заметку о многомерной топологии, идеи которой развили его друг Энрико Бетти (1823-1892) и Пуанкаре, который основал геометрию многомерных многообразий и комбинаторную топологию. Риман и Пуанкаре называли топологию Analysis situs, слово "топология" - перевод этого термина с латинского на греческий язык.
Я изучал также историю бесконечномерной геометрии, основанную Сальваторе Пинкерле (1853-1936) и Давидом Гильбертом (1862-1943), которые рассматривали в качестве точек и векторов бесконечномерных пространств функции. Замечу, что русский математик Владимир Андреевич Стеклов, который бурно протестовал против многомерной геометрии Римана, в своих работах об "ортогональных функциях" фактически пользовался бесконечномерным пространством Гильберта. Геометрия гильбертова пространства широко применяется в квантовой механике.
Группы вращений гиперсфер в гильбертовых пространствах некомпактны, как и сами эти гиперсферы. Я несколько раз упоминал унитарные представления некомпактных простых групп Ли, опреденные Израилем Моисеевича Гельфандом (р. 1913) и его сотрудниками и Хариш - Чандрой (1923-1983). Эти представления являются гомоморфными отображениями некомпактных простых групп Ли в группы вращений гиперсфер комплексных гильбертовых пространств.
Глава 3. СИММЕТРИИ И УСТОЙЧИВОСТЬ Симметрии, двойственность и тройственность
В главе "Пространства и группы" я упоминал принцип двойственности проективной геометрии и обобщения этого принципа, предложенные Э.Картаном, в том числе принцип тройственности, а также группы, которые И.М.Гельфанд предложил называть двойственными и тройственными по Картану. Обобщения принципа двойственности, предложенные Картаном, связаны с двусторонней и трехсторонней симметриями диаграмм Дынкина соответственных групп Ли.
Многие мои работы, начиная с докторской диссертации и работы 1949 г., помещенной в сборнике моих переводов работ Картана, посвящены образам симметрии различных пространств, образующим модели симметрических пространств Картана, определяемых двусторонними симметриями. Образы симметрии различных пространств изучались и многими моими учениками. В моей книге 2003г. совместной с М.П. Замаховским рассматриваются обобщения симметрических пространств, называемые периодическими пространствами. Эти пространства определяются k-сторонними симметриями при k >2.
Симметрии привлекали внимание математиков и философов еще в древности. Правильные многогранники, обладающие максимальной симметрией, были открыты пифагорейцами и играли особую роль в философии Платона, вследствие чего их часто называют "платоновыми телами". Платон считал, что атомы четырех греческих элементов имеют форму четырех правильных многогранников: атомы огня имеют форму правильного тетраэдра, атомы воздуха - форму октаэдра, атомы воды - форму икосаэдра, а атомы земли - форму куба. Форму пятого правильного многогранника - додекаэдра по мнению Платона имеет мир в целом, а на 12 гранях этого додекаэдра по его мнению изображены 12 знаков зодиака. Группа симметрии тетраэдра состоит из 24 элементов, группы симметрии октаэдра и куба - из 48 элементов, группы симметрии икосаэдра и додекаэдра - из 120 элементов.
Великий математик первой половины ХХ века Герман Вейль в своей книге "Симметрия" отметил, что изображения божеств, святых и священных животных в ассиро-вавилонском, древнегреческом, римском и средневековом искусстве всегда симметричны. Симметрия этих изображений указывает на то, что их авторы ощущали глубокую связь между божественным и симметричным.
Читать дальшеИнтервал:
Закладка: