Газета Завтра - Газета Завтра 45 (1197 2016)
- Название:Газета Завтра 45 (1197 2016)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Газета Завтра - Газета Завтра 45 (1197 2016) краткое содержание
Газета Завтра 45 (1197 2016) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Валентин ГИБАЛОВ.В рамках программы IV поколения есть целых шесть направлений — разные технологии реакторов, которые по-разному решают дилемму безопасности и стоимости. Одно из этих направлений — высокотемпературные газоохлаждаемые реакторы. Такая идея в своё время показалась очень привлекательной, когда широко обсуждалось, что водород станет следующим энергетическим укладом, в котором у нас будут водородные машины и самолёты, водородные турбины для получения энергии. Водород в такой энергетике будет аккумулятором энергии, а вырабатываться он будет на атомных электростанциях с помощью термохимических циклов.
Но тут есть свои сложности. Дело в том, что газоохлаждаемые реакторы только в первом приближении выглядят намного более дешёвыми. Сейчас фабрикация топлива для современных ВВЭР — это целая сложная и высокоточная машиностроительная отрасль, производящая ТВЭЛы и собирающая из них топливные сборки — ТВС.
А для газоохлаждаемых реакторов придумали совершенно иное топливо, так как в потоке газа работать проще. Это просто графитовые шарики, в которых практически графитовая пыль смешана с ураном. Их насыпают в большую "банку", которая представляет собой активную зону реактора, и они там нагреваются, а через них продувают гелий. Такое топливо уже способно работать при температуре в 8500оС, заработает и при 10000оС. А это и есть условия термохимического цикла, либо же хорошего цикла на газовой турбине. То есть мы получаем одноконтурный реактор, выбрасывая по дороге все эти парогенераторы и кучу арматуры.
"ЗАВТРА". Ставим большую турбину и внутри этого цикла гоняем гелий? А если, допустим, у нас дырочка появилась в реакторе или турбине?
Валентин ГИБАЛОВ.Есть такая проблема, которая, собственно, и поставила крест на этой красивой идее в своё время. Появляется дырочка, у нас весь теплоноситель, который ещё и под большим давлением, уходит наружу, и мы остаёмся без охлаждения. Даже если реактор заглушен, у него остаётся остаточное тепловыделение, которое, как мы знаем, прекрасно губит любой реактор. Вот вам и новая Фукусима…
А газовый реактор ведь не маленький, оболочка получается диаметром метров в 30, и всё это рассчитывается на давление в 100 атмосфер, иначе газом просто не отвести всё тепло, что выделяет реактор. Можно, конечно, такой реактор под воду спрятать, на морское дно, например, — будет внешнее давление, но это экзотика. Есть и другой вариант — конвективное охлаждение, но под него надо раздуть размеры реактора, к которому подводят охлаждающие каналы и так его охлаждают. Китайцы — основные запевалы в направлении газоохлаждаемых реакторов, они строят сейчас два таких энергоблока.
"ЗАВТРА". Здесь надо сказать, что китайцы не сами делают — они взяли немецкий опыт. Немцев в своё время очень сильно психологически задавила наша авария в Чернобыле, и они тогда свои реакторы закрыли. Хотя их газоохлаждаемые реакторы были уже почти готовы.
Валентин ГИБАЛОВ.Там тоже была авария, как раз на немецком газоохлаждаемом реакторе, в конце 1980-х. И под это дело, да ещё на фоне Чернобыля, реактор в ФРГ просто ликвидировали. Китайцы купили какой-то объём немецких технологий, а что-то просто скопировали. Но интересно, что их реактор мощностью в 1/12 от водо-водяного ВВЭР-1200 размером получился в три раза больше, чем российский. То есть для газа надо иметь гигантский корпус реактора. И эту проблему пока только думают, как решить.
"ЗАВТРА". Хорошо, это первая из шести концепций. А какие есть ещё?
Валентин ГИБАЛОВ.Вторую и третью мы уже сегодня затронули. Это свинцовый (БРЕСТ) и быстрый натриевый (БН) реакторы.
"ЗАВТРА". А оставшиеся три варианта какие?
Валентин ГИБАЛОВ.Оставшиеся три варианта — это прежде всего реакторы на суперкритичной воде, есть такое "странное" состояние, в котором нет границы между паром и жидкостью, его называют "среда", и на такой технологии уже работают угольные ТЭС. Смысл в том, что это вещество не кипит. То есть его нагреваешь, у него изменяется давление, но оно не претерпевает фазовых переходов. Оно остаётся примерно таким же, однородным. С ним проще, с одной стороны, работать. С другой стороны — не проще, потому что в реакторах в условиях нейтронного облучения ничего не изучено. При таких высоких температурах ещё не испытывали все конструкционные материалы. То есть никто не знает, как будет протекать коррозия всех этих элементов, как их будут разрушать нейтроны. Температура выше, давление сильно выше, но это очень перспективная идея. Она позволяет на обычных водо-водяных реакторах сделать практически замкнутый ядерный топливный цикл, имея коэффициент воспроизведения в районе 1,1. Сейчас на обычных ВВЭРах он 0,4-0,5. То есть загрузили 100 кг, а вынули 40 кг остатков. А на сверхкритике можно вынуть 110 кг, загрузив всего 100, как на бридере.
Кроме того направление высокотемпературных газовых реакторов делят обычно надвое: есть просто газоохлаждаемые, о которых мы уже сказали, а есть именно под термохимический цикл, даже под плавление стали, и оно выделено в отдельное направление, так как требует запредельных температур.
"ЗАВТРА". Есть отдельно газоохлаждаемое, а есть газоохлаждаемое со всякими термохимическими циклами?
Валентин ГИБАЛОВ.Да, это пятое направление. Ну и, наконец, шестое перспективное направление — это вообще полная экзотика. Реакторы на расплавах солей. В них мы берём уран или торий, но не в форме металла, а в форме соли, например, фторида. Получаем смесь солей, которые можно расплавить, и температура плавления их будет около 4000оС, и мы получаем реактор, в котором нет ничего!
"ЗАВТРА". То есть вот у него топливо и это же — теплоноситель? Ну, и охладитель, так как всё это работает в одном контуре?
Валентин ГИБАЛОВ.Да. Если активная зона современных реакторов — это очень сложное машиностроительное изделие, с точной механикой и массой деталей, то в реакторе на расплаве солей внутри пусто. Там налита просто эта самая соль, смесь солей, которая и идёт на теплообменники. Почему же эти реакторы не завоевали мир, если они такие простые и красивые? Основная проблема в том, что при делении урана он образует половину таблицы Менделеева, и у нас получается расплав не двух веществ, а нескольких десятков. И подобрать материалы, которые в условиях температуры 600оС, радиации и нейтронов стояли бы 30 лет в потоке из такой адской химической смеси, очень трудно. Поэтому шестой тип реактора и самый простой, но и самый трудный в создании.
"ЗАВТРА". Так что, есть у нас надежда на новые, безопасные и эффективные, реакторы?
Читать дальшеИнтервал:
Закладка: