Никола Тесла - Статьи
- Название:Статьи
- Автор:
- Жанр:
- Издательство:Издательский дом «Агни»
- Год:2008
- Город:Самара
- ISBN:978-5-89850-078-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Никола Тесла - Статьи краткое содержание
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.
Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.
Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.
Книга рассчитана на широкий круг читателей.
Статьи - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Отметив в ряде случаев исключительную лучевую проницаемость костей (свойство костей — пропускать сквозь себя рентгеновские лучи), я сначала предположил, что лучи, возможно, представляют собой высокочастотные колебания, и масло каким-то образом частично поглощало их. Однако эта точка зрения оказалась несостоятельной, когда я обнаружил, что на определенном расстоянии от лампы получил контрастное теневое изображение костей. Это последнее наблюдение побудило меня активнее использовать экран для получения отпечатков на пластине, а именно: с помощью экрана сначала необходимо определить подходящее расстояние для объекта перед съемкой. Вы убедитесь, что зачастую при большем расстоянии изображение бывает более отчетливым. Чтобы исключить возможность каких-либо погрешностей во время экспериментов с экраном, я разместил вокруг аппарата толстые металлические пластины, препятствующие флюоресценции, которая может возникнуть как следствие излучений, попадающих на экран от боковых стенок. Считаю, что такое приспособление совершенно необходимо, если вы стремитесь к корректности ваших научных исследований.
Когда я изучал поведение масел и других жидких изоляторов, чем продолжаю заниматься и сейчас, мне пришло в голову исследовать замечательное явление, открытое профессором Дж. Дж. Томсоном. Некоторое время тому назад он возвестил, что все вещества, через которые проходят излучения Рентгена, становятся проводниками электричества. Применив тест на восприимчивость к резонансу для исследования этого феномена, я сделал это так, как уже показано в моих ранних статьях о токах высокой частоты. Вторичный контур, желательно не в очень близком индукционном контакте с первичным, подключили к последнему и заземлили. Колебания в первичном контуре были настроены таким образом, чтобы резонанс действительно имел место. Поскольку вторичный контур содержал большое количество витков, маленькие тела, присоединенные к свободной клемме, создавали существенные колебания потенциала на последнем. Помещая трубку в деревянный ящик, заполненный маслом, и подсоединяя ее к клемме, я настраивал колебания в первичном контуре таким образом, чтобы резонанс возникал помимо лампы, испускающей лучи Рентгена на значительное расстояние. Затем изменил условия опыта, чтобы лампа начала генерировать излучения с большей эффективностью. Согласно утверждению профессора Дж. Дж. Томсона, маслу предстояло теперь стать проводником и должно было произойти очень заметное изменение в колебании. Однако выяснилось: этого не случилось, и нам следует рассматривать феномен, открытый Дж. Дж. Томсоном, лишь в качестве дополнительного свидетельства того, что здесь мы, возможно, имеем дело с потоками материи, которая, проникая сквозь тела, вбирает в себя электрические заряды. Но тела не становятся проводниками в общепринятом понимании этого термина. Методика, которую я избрал, столь чувствительна, что ошибка представляется мне практически невозможной.
«Electrical Review», 22 апреля 1896 г.
19
Любопытная особенность рентгеновских излучений
Нижеследующие эксперименты, проведенные с трубками, испускающими рентгеновские лучи, представляют интерес, поскольку проливают дополнительный свет на природу этих излучений, а также полнее иллюстрируют уже известные свойства. В основном данные наблюдения соответствуют тем идеям, которые с самого начала полностью овладели моим сознанием; суть их в том, что лучи состоят из потоков мельчайших материальных частиц, выбрасываемых с огромной скоростью. В ходе многочисленных экспериментов я убедился, что материя, которая при ударе вызывает образование лучей, может исходить из любого электрода. Ввиду того, что последний при длительном использовании претерпевает заметные структурные изменения, более убедительным выглядит предположение, что выбрасываемая материя состоит из частиц самих электродов, а не из частиц остаточного газа. Однако и другие наблюдения, на которых сейчас нет возможности подробно останавливаться, приводят к такому заключению. При ударе массы выбрасываемой материи дробятся на мельчайшие частицы, способные проникать сквозь стенки колбы, или отрывают такие частицы от стенок либо вообще от тел, на которые попадают. Во всяком случае, удар с последующим дроблением представляется абсолютно необходимым условием для генерирования рентгеновских лучей. Вибрация, если таковая имеется, является лишь следствием работы аппарата, и колебания могут быть только продольными.
Главный источник лучей — исключительно место первого столкновения внутри колбы, будь то анод, как в некоторых типах трубки, или помещенное внутрь колбы изолированное тело, или стеклянная стенка. Когда исходящая из электрода материя после удара о препятствие отбрасывается на другое тело, например, на стенку колбы, место второго столкновения становится очень слабым источником лучей.

Ил. 1
Иллюстрация 1, представляющая применявшийся в ряде экспериментов тип трубки, поможет лучше разобраться в этих и других выводах. В основном это тот тип трубки, который был описан ранее при других обстоятельствах. Одинарный электрод e , состоящий из массивной алюминиевой пластины, смонтирован с кабелем с , имеющим, как обычно, стеклянное защитное покрытие w и герметично впаянным в один из концов прямой трубы b , диаметр которой около 5 сантиметров, а длина 30 сантиметров. Другой конец трубы в результате выдувания имеет форму тонкостенной колбы несколько большего диаметра, и в этой части трубы на стеклянном штоке s укреплена воронка f из тонкого платинового листа. В таких лампах я пробовал различные металлы в качестве мишени столкновения, чтобы увеличить интенсивность лучей, а также для отражения и концентрации лучей. Но поскольку профессор Рентген в недавней статье подчеркнул, что наиболее интенсивные лучи дает платина, я использовал главным образом этот металл, убеждаясь в заметном усилении воздействия на экран или на чувствительную пластину. Описываемое здесь устройство специально сконструировали, чтобы выяснить, будут ли лучи, возбужденные на внутренней поверхности платиновой воронки f, фокусироваться снаружи колбы, и, более того, будут ли они исходить прямолинейно из точки фокусирования. С этой целью воображаемую вершину конуса воронки вывели из колбы наружу примерно на два сантиметра, что соответствует точке о.
Когда в лампе был достигнут необходимый вакуум и она начала работать, стенка стеклянной колбы под воронкой f стала сильно фосфоресцировать, но неоднородно, поскольку образовалось узкое кольцо rr 1, более яркое в периферийной части; очевидно, что это кольцо появилось благодаря воздействию лучей, отразившихся от платинового листа. Когда флюоресцирующий экран соприкасался или приближался к стеклянной стенке колбы под воронкой, часть экрана в непосредственной близости от флюоресцирующего участка была ярко освещена, а контуры пятна при этом совсем размыты. При удалении экрана от колбы ярко освещенное пятно становилось меньше, а его контуры отчетливее до тех пор, пока по достижении точки о светящаяся часть не сокращалась до маленькой точки. Продвижение экрана на несколько миллиметров дальше от точки о вызывало появление маленькой черной точки, которая расширялась до круга и становилась тем больше, чем больше увеличивалось расстояние от колбы, пока на достаточно большом расстоянии темный круг не охватывал весь экран. Этот безукоризненный эксперимент наглядно продемонстрировал прямолинейное распространение лучей, что ранее доказал Рентген методом микроканальной фотографии. Но кроме этого выявилась одна важная деталь, а именно: флюоресцирующая стеклянная стенка практически не испускала лучей, тогда как при отсутствии платинового экрана, но при прочих равных условиях она стала бы эффективным источником лучей, так как стекло даже при слабом возбуждении колбы сильно нагревалось. Можно дать единственное объяснение отсутствию излучения от стекла, предположив, что исходящая из поверхности платинового листа материя уже находится в диспергированном состоянии, когда она попадает на стеклянную стенку. Примечательно также и то, что уже при слабом возбуждении лампы края темного пятна были четкими, что решительно отвергает возможность диффузии. При очень сильном возбуждении лампы фон становился ярче, а теневая проекция S более расплывчатой, хотя и тогда она всё еще оставалась видимой.
Читать дальшеИнтервал:
Закладка: