Управление главного конструктора АВТОВАЗ - Высокой мысли пламень (Часть вторая)
- Название:Высокой мысли пламень (Часть вторая)
- Автор:
- Жанр:
- Издательство:ДИС ОАО АВТОВАЗ
- Год:2004
- Город:Тольятти
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Управление главного конструктора АВТОВАЗ - Высокой мысли пламень (Часть вторая) краткое содержание
В ней охвачен период с 1976 по 1986 гг. Личные биографические воспоминания ветеранов, которым отдана дань в первой книге, здесь уже не представлены - весь объём полностью посвящен разработкам новых автомобилей.
Поскольку главнейшей задачей подразделений типа УГК на любом автомобильном заводе являются именно подобные разработки, такой подход показался нам вполне оправданным. Тем более что охватываемое десятилетие было в этом плане весьма плодотворным.
Трудно, конечно, очертить точные временные рамки того или иного проекта — от замысла до конкретного воплощения порой проходят годы и годы. Поэтому в тексте книги неизбежны как экскурсы в предыдущий период, так и некоторое «забегание» вперёд. И пусть это никого не смущает.
Нельзя не отметить также, что книга не зря носит подзаголовок «Страницы истории». Именно - страницы. Поскольку всю историю УГК даже за это конкретное десятилетие охватить просто невозможно. Закон Козьмы Пруткова «Нельзя объять необъятное» остаётся действенным и поныне.
В книге рассказана история создания ВАЗ-2103, амфибии на ВАЗовских агрегатах, семейства ВАЗ-2105/07/04, переднеприводного семейства («Спутник»/«Самара»), малолитражки «Ока», воспоминанния создателей ВАЗовской электрики и электроники.
Высокой мысли пламень (Часть вторая) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Утром автомобиль должен быть представлен руководству завода, а к концу предыдущего дня автомобиль был собран лишь наполовину.
Мне, как и многим другим конструкторам, нужно было поставить на автомобиль «своё» изделие.
Пришлось просидеть всю ночь в ожидании очереди, когда можно будет подойти к собираемому автомобилю, поставить своё изделие, проверить его работу и уйти домой.
А проверить нужно было обязательно, поскольку многие изделия, в том числе и жгут проводов, были опытными (как говорится, сделанными «на коленке» и в спешке), из-за чего могли возникнуть любые неожиданности.
Ответственным по жгуту проводов был В. Низеньков из отдела электрооборудования. На автомобиле ВАЗ-2105 был впервые внедрён монтажный блок – центральное распределительное устройство.
И, как мне помнится, с ним у Низенькова было много проблем. Однако к утру автомобиль всё-таки завели, он поехал, а мы все пошли домой спать.
В то время электромобилисты были заняты разработкой автомобиля с гибридной силовой установкой.
Она была выполнена по следующей схеме. ДВС приводил во вращение генератор постоянного тока, который, в свою очередь, заряжал аккумулятор.
А уже от аккумулятора питался электродвигатель, приводящий в движение трансмиссию автомобиля.
Макетный образец был с двигателем ВАЗ-2101. Но проблемы компоновки привели к тому, что в итоге остановились на односекционном РПД – из-за его отличных габаритно-весовых показателей.
Нужно было срочно разработать для РПД систему зажигания, и Селянин поручил эту работу Кольченко.
Сейчас я уже не помню, почему нельзя было использовать штатную систему зажигания РПД – возможно, потому, что она в то время не была ещё доведена до нужной кондиции.
А может, по той причине, что идеологами гибридной силовой установки предполагалось, что система зажигания должна быть предельно простой. По их замыслу ДВС должен был работать только в трёх фиксированных режимах – пуск, холостой ход и рабочий режим (зарядка аккумуляторной батареи на фиксированных оборотах).
Однако, поразмыслив, мы решили разрабатывать блок управления с полноразмерной характеристикой углов зажигания в зависимости от частоты вращения коленчатого вала, а не с тремя фиксированными углами, как требовалось по ТЗ.
Кольченко начал работу с расчётов. Просчитав и проанализировав характеристику углов зажигания центробежного автомата, он пришёл к выводу, что её можно воспроизвести с помощью последовательно запускаемых временных интервалов постоянной скважности и постоянной длительности.
С помощью такого подхода можно было реализовать практически любую характеристику.
Схемотехнику мы делали вместе. Самым ценным тут был генератор импульсов постоянной скважности, или, как мы его назвали – «преобразователь периода во временной интервал».
Это была находка В. Кольченко. Схема работала прекрасно. Расчётная характеристика углов зажигания выполнялась очень точно.
Разработка системы управления зажиганием и, очевидно, всех других систем была сделана в срок, гибридный электромобиль был изготовлен и даже ездил – я сам устанавливал систему зажигания и участвовал в пробных запусках двигателя. Почему эта работа не получила продолжения, не знаю.
По окончании этой работы мы с Кольченко написали заявку на изобретение и получили авторское свидетельство на устройство «Полупроводниковая система зажигания» с грифом «Т», что означало – публикации в открытой печати запрещены. Очевидно, какое-то ведомство (скорее всего – военное) наложило на него «лапу».
В скором времени В. Кольченко был назначен начальником КБ автомобильной электроники.
В это же время нашему бюро было поручено взять под свой контроль и ответственность ещё одно «горящее» дело.
Это – разработка блока управления приоткрывателем дроссельной заслонки для автомобилей «шведской» комплектации.
Механизм, управляемый блоком, должен был на принудительном холостом ходу (ПХХ) двигателя удерживать некоторое время дроссельную заслонку приоткрытой, обеспечивая полное сгорание топливной смеси.
Тем самым снижались выбросы углеводородов и обеспечивалось выполнение шведских национальных требований по токсичности выхлопных газов.
К тому времени по заданию отдела проектирования двигателей были сделаны две разработки: одна – в НИИАП, а другая – в лаборатории автоматики УГЭ ВАЗа.
Кроме того, шведская фирма, занимающаяся продажей наших автомобилей, предлагала своё устройство, обеспечивающее нужные функции.
Да и у нас В. Стренев уже около полугода занимался такой разработкой.
Предстояло выбрать изделие для производства. Естественно, оно должно было удовлетворять требованиям ТЗ, быть дешёвым и надёжным.
Основная трудность заключалась в том, что изделие должно было работать с определённой (довольно высокой) точностью. То есть, измерять частоту вращения коленвала двигателя и вырабатывать управляющие сигналы в диапазоне температур от минус 40 до плюс 100° С, при напряжении питания от 6 до 16 вольт.
Позднее, при согласовании ТУ, верхняя граница температурного диапазона была снижена до +85° С, однако разработка и испытания образцов велись строго по ТЗ.
Точность работы такого прибора в подобных условиях обеспечивается температурной стабильностью времязадающих цепей, и чем меньше величина ёмкости времязадающего конденсатора, тем более высокой термостабильности можно достичь.
Принцип работы такого устройства заключался в измерении периода импульсов зажигания путём сравнения их с эталонным временным интервалом. При решении задачи напрямую – измерением периода импульсов зажигания – ёмкость времязадающего конденсатора получалась очень большой, и таких конденсаторов с требуемым температурным коэффициентом не было.
Поэтому все разработки не удовлетворяли требованиям ТЗ по точности срабатывания в рабочем температурном диапазоне. Двигателисты не отступали от своих требований по точности, и дело зашло в тупик.
Селянин, ещё будучи исполняющим обязанности начальника КБ, предложил мне подумать и предложить вариант схемы.
Идея измерять не сам период импульсов зажигания, а его во много раз уменьшенную (с помощью преобразователя периода во временной интервал) копию, оказалась плодотворной.
И вскоре на свет появилась схема, в которой удалось на два порядка уменьшить ёмкость времязадающего конденсатора (относительно схемы, разработанной Стреневым).
После сравнения вариантов схем блока управления для дальнейшей работы – изготовления образцов и сравнительных испытаний в лаборатории автоматики (ЛА) УГЭ – была выбрана моя схема.
В результате всех испытаний и анализов на совещании у зам технического директора ВАЗа Швягирева, проходившем в лаборатории автоматики, была утверждена к производству схема УГК. По решению технической дирекции производство блока управления планировалось в ЛА УГЭ.
Читать дальшеИнтервал:
Закладка: