Журнал Наука и Техника (НиТ) - «Наука и Техника» [журнал для перспективной молодежи], 2006 № 05 (5)
- Название:«Наука и Техника» [журнал для перспективной молодежи], 2006 № 05 (5)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2006
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал Наука и Техника (НиТ) - «Наука и Техника» [журнал для перспективной молодежи], 2006 № 05 (5) краткое содержание
«Наука и Техника» [журнал для перспективной молодежи], 2006 № 05 (5) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, в результате рассмотрения самых общих соображений мы проследили ту логику, на основе которой была выработана первоначальная концепция термоядерного реактора и обоснована целесообразность использования термоядерной энергии как таковой.
К настоящему моменту выделилось два основных направления установок, в которых проводятся исследования УТС и которые, возможно, станут основой термоядерных реакторов будущего (в них получены наиболее приемлемые результаты) — это токамак и горсатрон. Идея первых была предложена выдающимися советскими учеными Сахаровым и Таммом, а вторых американским астрофизиком Лайманом Спитцером Младшим. И те и другие схематически представляют собой обширную тороидальную («бубликоподобную») камеру, внутри которой с помощью магнитных полей удерживается плазма. Собственно говоря, системой создания этих полей они и отличаются.
На настоящий момент принципиальные проблемы, приведенные выше, уже фактически решены, и ученые идут по пути рационализации различных инженерных решений. То есть на планете Земля уже идут термоядерные управляемые реакции, длящиеся десятки секунд (а это совсем не мало). Однако возник целый ряд других задач. Одной из наиболее трудно решаемых на данный момент является так называемая проблема первой стенки. Она заключается в том, что в результате осуществления дейтерий-тритиевого синтеза образуются высокоэнергетичные нейтроны, которые вследствие своей нейтральности не могут удерживаться электромагнитными полями. Они бомбардируют стенку кожуха установки, приводя к радиокоррозии последней. Причем скорость разрушения стенки такова, что уже через год прогнозируемого использования реактора начнется процесс блистиринга [5] Под блистирингом в материаловедении реакторостроения и взаимодействии плазмы с твердым телом понимают такую стадию радиокоррозии, когда происходит «отшелушивание» поверхности (наподобие старой краски).
, совершенно недопустимый в плазменных установках.
Следует отметить, что многие скептики называли и называют (хотя в последнее время все реже и реже) управляемый термоядерный синтез самой дорогостоящей авантюрой в истории человечества. Что ж, действительно, стоимость отдельно взятых установок и обслуживания достигает подчас миллиардов американских долларов. Общая же сумма, затраченная на это направление, колеблется в районе десятков-сотен миллиардов и превышает затраты на развитие любого другого альтернативного источника энергии, при этом нет еще ни одного реактора, который бы работал в промышленном режиме (и вряд ли он появится в ближайшее десятилетие). В разработку и создание устройств УТС вовлечены десятки тысяч ученых и инженеров. Поистине масштаб этого мероприятия грандиозен. Да и сама задача кажется фантастической, ведь по сути, фигурально выражаясь, люди хотят запрячь звезду в телегу своих потребностей.
Однако, несмотря на все это, физика плазмы уверенно движется к осуществлению УТС на Земле. И то, что еще двадцать лет назад казалось невозможным, сейчас уже является нормой. Кроме того, физика плазмы дала начало развитию множества современных технологий, которые можно увидеть, глядя на цветной экран собственного мобильного телефона.
Основным отличительным свойством токомаков является наличие тока плазмы внутри тора. Ток в системе кольцевых проводников создает тороидальную составляющую магнитного поля (см. рис. 2 а ).
Так называют составляющую, которая направлена параллельно касательной к кольцевой оси тора в любом меридианном сечении. Тороидальный ток плазмы создает так называемую полоидальную составляющую магнитного поля, направленную параллельно касательной к контуру, который возникает в меридианном сечении тороидальной поверхности. Грубо говоря, тороидальная составляющая является продольной, а полоидальная охватывает кольцами ток в торе. Диаграмма сложения векторов (рис. 2 б ) относится к одной выбранной точке и может быть распространена на другие точки наблюдения.
В результате мы получим суммарную линию, объединяющую направления вектора магнитного поля и представляющую собой спираль. Таковой вкратце есть принципиальная схема удержания плазмы в токамаке. Более подробное рассмотрение необходимости наличия винтового магнитного поля в тороидальных установках является темой отдельного разговора и в данном изложении будет опущено.
Устройства типа токамак появились в Советском Союзе в Институте атомной энергетики имени Курчатова в 1950-х годах. В 1969 году Л.А. Арцимович продемонстрировал жизнеспособность таких установок, сообщив на Международной конференции в подмосковной Дубне результаты, достигнутые на токамаке Т — 3. На mom момент это были фантастические цифры (температура плазмы — 10 млн. градусов Кельвина). Такой успех обусловил фактически триумфальное движение идеи токомака по всему миру. Это направление подхватили в США, Великобритании, Франции, ФРГ, Японии и так далее.
Придать силовой линии магнитного поля вид спирали можно также при помощи внешних по отношению к плазме токов. Если такие токи имеют винтовую структуру (а этого можно достичь, пропустив ток по винтовым проводникам, «намотанным» на тор), то и линии магнитного поля имеют такой же характер. Схема, приведенная на рисунке 3 а , близка к действительности.
Спиральную обмотку составляют два винтовых проводника (двухзаходная винтовая обмотка), каждый из которых замыкается на себя после трех оборотов вокруг тора. Вообще количество проводников и число оборотов вокруг тора могут быть и другими. Так установка «Ураган-3» (Харьковский физико-технический институт) имеет трехзаходную обмотку. На приведенной схеме один проводник отмечен желтыми стрелками, а другой красными. По ним можно проследить намотку проводников и направление тока в каждом из них. Винтовой ток можно представить в виде суперпозиции полоидального и тороидального (см. рис. 3 б ). А, следовательно, как и в токамаке, мы получим силовые линии магнитного поля в форме спирали.
Идея возможности создания плазменной ловушки с однонаправленными токами в винтовых проводниках принадлежит В.Ф. Алексину (Харьковский физико-технический институт). В 1961 году он изучал вопрос о существовании магнитных поверхностей в таком устройстве. В 1968 году эта идея была переоткрыта во Франции К. Гурдоном (С. Gourdon) с коллегами, а также независимо японцем К. Уо (К. Uo).
• ИСТОРИЯ И АРХЕОЛОГИЯ
Бироновщина как историографический миф
Селевич Ю.Л.
Период российской истории с 1730-40 гг. при котором страной руководила императрица Анна Иоанновна, широко известен в советской исторической литературе под названием Бироновщины (по имени фаворита Анны — Бирона). Для историографии характерно несколько штампов в определении этого периода, и их вполне точно отразила заметка в Советском энциклопедическом словаре: «Бироновщина — реакционный режим в России 1730-40 гг. при императрице Анне Иоанновне, по имени Э. И. Бирона. Засилье иностранцев, разграбление богатств страны, всеобщая подозрительность, шпионаж, доносы, жестокое преследование недовольных». Однако многие современные исследователи этого периода не разделяют данную точку зрения. В данной статье мы попытаемся вкратце охарактеризовать личность императрицы и развеять несколько самых распространенных мифов, связанных с временем ее правления.
Читать дальшеИнтервал:
Закладка: