Журнал Наука и жизнь, 1980 № 01

Тут можно читать онлайн Журнал Наука и жизнь, 1980 № 01 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Циклы, год 1980. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Журнал Наука и жизнь, 1980 № 01
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    1980
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Журнал Наука и жизнь, 1980 № 01 краткое содержание

Журнал Наука и жизнь, 1980 № 01 - описание и краткое содержание, автор Неизвестный Автор, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука и жизнь»

Журнал Наука и жизнь, 1980 № 01 - читать онлайн бесплатно полную версию (весь текст целиком)

Журнал Наука и жизнь, 1980 № 01 - читать книгу онлайн бесплатно, автор Неизвестный Автор
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Одно из простейших органических соединений, способных выполнять функции подобных клещей, — этилендиамин NH 2- СН 2- СН 2- NH 2. Если водный раствор этого соединения, не обладающий никакой окраской, прилить к раствору сернокислой меди CuSO 4, то есть медного купороса, имеющего, как известно, голубой цвет, то смесь сразу же становится сине-фиолетовой. Происходит это оттого, что в растворе образуется соединение, в котором на один атом меди приходится две молекулы этилендиамина.

Читатель, наверное, сразу же обратил внимание на то, что связи между атомом меди и молекулами этилендиамина, цепляющимися за металл посредством атомов азота, выглядят не совсем обычно и обозначены стрелочками, а не отрезками прямых линий. Это сделано неспроста, связь металл — азот в данном случае несколько отличается от связи, образованной, скажем, атомами азота и углерода. Но это различие состоит лишь в способе образования связи. Что же это за способ?

Дело в том, что атомы азота в молекуле этилендиамина имеют свободную пару электронов, непосредственно не участвующую в образовании химической связи с атомами углерода и водорода. Такая пара электронов у химиков носит название неподеленной . При образовании обычной валентной связи каждый из партнеров поставляет в совместное пользование по одному электрону, так что связь образуется обобществленной электронной парой. Однако такой путь формирования химической связи отнюдь не единственный. Во многих случаях при возникновении химической связи один из партнеров вносит на общий пай два электрона, а второй лишь принимает один из них на свои вакантные электронные оболочки. Однако и здесь, как нетрудно отметить, связь образуется за счет обобществления двух электронов, так что она совершенно равноценна валентной связи. Однако химики все же считают нужным подчеркивать различие в способах образования связи и обозначают связь, возникшую вторым из разобранных здесь способов, стрелкой. Причем стрелка направляется в сторону того атома, который принимает электроны; такой атом носит название акцептора . Атом же, поставляющий электроны, по аналогии с медицинским термином получил название донора . Поэтому и связь такого рода носит название донорно-акцепторной (иногда ее называют более кратко дативной ). Заметим здесь же, что при образовании клещевидных соединений органическая молекула (лиганд) всегда является донором электронов, а атом или ион металла — акцептором их.

Взглянем еще раз на молекулу соединения иона Си 2+с этилендиамином. В ней целых четыре донорно-акцепторные связи. Как ион может их реализовать?

Обратимся к строению иона двухвалентной меди. На внешней электронной оболочке у него имеются места для девяти пар электронов. Однако ион Си 2+имеет всего девять валентных электронов, которые не заполняют нацело всю внешнюю оболочку, и она может послужить пристанищем для тех электронов, что поставят молекулы этилендиамина. Таким образом и образуются четыре дативные связи, и к иону меди присоединяются две молекулы этилендиамина. Это, конечно, лишь простейший случай, в большинстве же других дело обстоит значительно сложнее и для трактовки связи металл — лиганд требуется применение квантовой механики. Однако в качестве наглядного пособия такая интерпретация оказывается вполне приемлемой.

Ну, а теперь совершим небольшую прогулку по удивительному миру комплексных соединений, с одним из представителей которого мы познакомились.

В молекуле соединения Си 2+с этилендиамином органические клещи цепляются за металлический орех посредством четырех дативных связей иона металла с атомами азота. Обязательно ли связь между ионом металла и лигандом должна осуществляться только таким способом? Оказывается, что нет. Есть немало соединений, где образуются, так сказать, смешанные связи — клещевидные части органических молекул образуют с ионом металла и донорно-акцепторную и прямую валентную связи. Как это может получиться, наглядно демонстрирует соединение глицина с медью, представленное формулой внизу: медь вытесняет водород и соединяется с кислородом валентной связью, с азотом же она образует дативную связь. Сходным образом устроено и соединение, показанное рядом. Подобные ему вещества получили специальное название «внутрикомплексные соли», или «хелаты». Кстати, само слово «хелат» берет свои истоки от древнегреческого «хеле», что означает «клешня»…

Продолжим наше путешествие и пронаблюдаем, как цепляются клещевые концы лигандов за ион металлов. Довольно быстро можно отметить, что делается это совсем не где и как попало, а строго по вершинам определенных многоугольников или многогранников, как бы окружающих ион металла. Сам ион, кстати сказать, находится в центре такого многоугольника или многогранника. Взгляните на формулу соединения, с которого начинался наш рассказ: дативные связи протянулись к иону меди по диагоналям квадрата. Ионы Pd 2+, Au 2+, Ag 2+также предпочитают квадратную координацию, и тогда получаются соединения лишь с двумя молекулами-клещами. А вот Fe 3+, Со 3+, Ni 2+, Сr 3+и многие другие предпочитают возводить вокруг себя октаэдрические постройки. У октаэдра шесть вершин, поэтому вокруг центрального иона в этом случае могут разместиться три лиганда типа этилендиамина, каждая из которых займет две соседние вершины октаэдра. Впрочем, нередко и координационное окружение и вместе с ним число мест для хватки лиганда зависят, так сказать, от норова последнего — тот же Ni 2+образует с диметилглиоксимом HON = C(CH 3) — С(СН 3) — NOH соединение ярко-розового цвета, которое содержит на один атом металла только две молекулы вышеуказанного соединения, ориентированных по вершинам квадрата…

Если центральный ион попадает в объятия двух или большего числа подобных клещей, концы которых неравноценны, то возникает любопытная возможность — эти клещи могут занять относительно охватываемого ими атома металла разные позиции! Например, ион Со 3+образует с тиосемикарбазидом NH 2- CS - NH - NH 2два соединения, зеленое и фиолетовое, различающиеся взаимной ориентацией лигандов.

Известны экзотические примеры комплексов никеля, которые в зависимости от температуры меняют свою геометрию: при относительно низких температурах молекулярные клещи лигандов располагаются по вершинам квадрата, а при более высоких — подстраиваются под тетраэдрическую координацию. Перед нами примеры изомерии, аналогии которой в органической химии нет.

Чем же определяется прочность сцепления молекулярных клещей с захваченными в плен орехами?

На первый взгляд может показаться, что в роли клещей может выступать любая молекула — были бы только донорные атомы! Но на поверку это оказывается не так. Возьмем несколько органических молекул-цепочек различной длины, на концах которых сидят аминогруппы NH 2:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Неизвестный Автор читать все книги автора по порядку

Неизвестный Автор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Журнал Наука и жизнь, 1980 № 01 отзывы


Отзывы читателей о книге Журнал Наука и жизнь, 1980 № 01, автор: Неизвестный Автор. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x