Журнал Наука и жизнь, 2000 № 01
- Название:Журнал Наука и жизнь, 2000 № 01
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2000
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал Наука и жизнь, 2000 № 01 краткое содержание
Журнал Наука и жизнь, 2000 № 01 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подсистема «принятие решений» отыскивает среди сформированных знаний действие, которое приводит к наибольшему приращению эмоциональной оценки состояния и наиболее высокой вероятности получения новых знаний.
Подсистема «определение времени принятия решения» оценивает, насколько быстро нужно принять очередное решение.
Поясним подробнее работу последней подсистемы. Очевидно, что, чем хуже состояние и чем быстрее оно ухудшается, тем скорее требуется принять решение. Если просмотр всей Базы Знаний требует слишком больших затрат времени, управляющая система может просматривать лишь ее часть, учитывая только наиболее важные последствия того или иного решения. Неучтенные факторы будут реализовываться случайным для управляющей системы образом.
Например, увидев быстро наезжающий грузовик, мы принимаем решение отпрыгнуть в сторону, чтобы сохранить себе жизнь, и не учитываем второстепенных последствий: как мы будем выглядеть в глазах проходящей мимо дамы, не уроним ли шляпу, не наступим ли на газон и т. д. Если же мы распознали образ грузовика вдали, то, уходя в сторону, учтем и даму, и шляпу.
Некоторые из нас при значительном ухудшении ситуации впадают в заторможенное состояние, некоторые, напротив, становятся более активными. Индивидуальные особенности подсистемы «определение времени принятия решения» определяют тип нашего темперамента.
На практике обычно строят такие управляющие системы, которые решают лишь часть задач из вышеперечисленных, обычно одну-две. Например, системы распознавания, как правило, не принимают самостоятельных решений: им заранее известно, что следует делать при распознавании того или иного образа. Экспертные системы, напротив, строятся на базе уже готовых знаний, и им требуется только принимать решения. Некоторые системы занимаются решением исключительно поисковых и оптимизационных задач (так называемые генетические алгоритмы и другие подходы).
Гораздо сложнее создать систему управления, в которой решения всех перечисленных задач были бы взаимосвязаны, а исходные знания о свойствах объекта управления и среды допускали бы значительную неопределенность. Трудность построения такой системы объясняется тем, что все ее части — подсистемы — должны учитывать результаты работы других подсистем в качестве своих исходных условий.
Поскольку наша научная группа придерживается имитационного подхода к моделированию нервной деятельности, мы строим модель управляющей системы по аналогии с естественными нервными системами. Подобно нервной системе, представляющей собою сеть нейронов, управляющая система тоже должна состоять из отдельных нейроноподобных элементов.
Модели «искусственных нейронов» были разработаны еще в сороковых — пятидесятых годах. Они представляют собой простое устройство, которое суммирует входные сигналы, умноженные на веса (своего рода приоритеты), приписанные каждому отдельному входу, и сравнивает полученную сумму с заданным порогом. Если сумма превысит порог, нейрон выдает на своем выходе сигнал «1», если нет — сигнал «О». Многослойную сеть из таких нейронов, в которой каждый получает сигналы от всех нейронов предыдущего слоя, можно обучить распознавать нужные образы. Но предварительно необходимо подобрать веса на входах по определенному правилу, зависящему от того, какие образы нужно распознать.
Однако свойства такого «искусственного нейрона» нас не удовлетворяли, поскольку его отличия от природного представлялись значительными. В частности, нас не устраивало, что для настройки нейронов требовался внешний учитель, наблюдающий за всей нейросетью.
Исходя из своего представления об управляющей системе, мы пришли к новой модели нейрона. Такой нейрон способен самостоятельно накапливать статистическую информацию о комбинациях входных сигналов. Статистика накапливается в синапсах, размеры которых растут пропорционально числу наблюдений связанных друг с другом сигналов. В тот момент, когда нейрон вдруг «понимает», что некая комбинация входных сигналов не случайна, он изменяет свое состояние — становится обученным и в дальнейшем начинает узнавать ее, распознавать образ. Образы, распознаваемые обученными нейронами, участвуют в формировании образов более высокого порядка. Чем более знакомым становится образ для нейрона, тем при более сильных помехах нейрон будет распознавать его.
Оказалось, что на базе таких нейронов можно конструировать сети, выполняющие функции всех перечисленных подсистем. При этом требуется определенный избыток нейронов, и он действительно существует в живых организмах: более 90 % нейронов человека остаются незадействованными в течение его жизни. Избыток искусственных нейронов в управляющей системе можно уменьшить и тем значительнее, чем более сложные связи между сигналами они способны обнаруживать, то есть за счет усложнения нейрона.
Новая модель нейронов позволила разработать управляющую систему, названную нами системой автономного адаптивного управления (ААУ). Основное ее свойство — способность автоматически находить способ управления в соответствии с меняющимися окружающими условиями и свойствами объекта управления, а также развивать и корректировать этот способ. Причем найденный однажды способ управления может быть «изъят» из системы и использован в работе другой системы, правда, уже в фиксированном виде.
Система автономного адаптивного управления — саморазвивающаяся система. В ее поведении можно увидеть детерминированную и случайную компоненты. Первая опирается на уже накопленные знания и стремится улучшить состояние системы, наличие второй связано с отсутствием знаний и стремлением их накопить. По мере накопления знаний поведение управляющей системы становится более детерминированным, что и отражает ее развитие. Пример саморазвития ААУ — последовательное появление у Демона трех механизмов принятия решения, каждый из которых вытекает из предыдущих и повышает эффективность управления.
Важно то, что в системе ААУ качество управления неуклонно растет, причем происходит это автоматически.
Как отмечалось выше, современная техника еще удовлетворяется управляющими системами, построенными либо только на основе системы распознавания, либо только на основе оптимизационных подходов и т. п. Каждый из этих частных методов глубоко развит и способен давать результаты, с которыми трудно конкурировать любому новому подходу. Однако решение задачи управления в более общем виде с помощью метода автономного адаптивного управления имеет свои преимущества, которые проявляются со временем. Это и обнадеживает нас в наших исследованиях.
Читать дальшеИнтервал:
Закладка: