Журнал «Юный техник» - Юный техник, 2009 № 09
- Название:Юный техник, 2009 № 09
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2009
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2009 № 09 краткое содержание
Популярный детский и юношеский журнал.
Юный техник, 2009 № 09 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но можно, в принципе, решить и обратную задачу — отгонять элементарные частицы от мишени. Стало быть, задача создания защитного силового поля могла бы быть решена, стреляй противник заряженными частицами. Но ракеты и снаряды отвратить от цели куда сложнее. Тем не менее, можно.
Суть такой динамической защиты можно понять опять-таки из школьного опыта. Вспомните, что будет, если внутрь катушки-соленоида с обмоткой вставить металлический сердечник. Стоит подать импульс тока — и сердечник вылетает из катушки, словно из пушки.
Кстати, подобные электромагнитные орудия еще до Второй мировой войны предлагал инженер Александр Казанцев, прославившийся впоследствии своими фантастическими произведениями. Но, если гвозди из соленоида с силой попадали в деревянные мишени, то все попытки перенести эксперименты на полигон, а тем более на поле боя и по сей день кончаются ничем.
На самом деле, оказывается, в комплекте вместе с электромагнитной пушкой надо иметь еще целую электростанцию для зарядки батареи сверхмощных конденсаторов, которые затем и разряжаются в доли секунды, формируя сверхмощный импульс.
Такая технология еще худо-бедно годится для посылки, например, снарядов на Луну (подробности см. в «ЮТ» № 3 за 2009 г.). Но создать защитный силовой экран вокруг танка, самолета или космического корабля она вряд ли поможет. Хотя, впрочем, первые попытки создания электромагнитной защиты для танков все же ведутся. Но опять-таки эксперименты пока еще не вышли за пределы полигона.
В тех же фантастических фильмах иногда можно видеть, как звездолеты при включении силового поля окутываются неким голубоватым сиянием. Так кинематографисты хотят наглядно показать, что создание защитного поля может быть связано с образованием облака плазмы.
Плазма — это четвертое состояние вещества, которое отличается от твердого, жидкого и газообразного тем, что атомы в плазме не связаны между собой и лишены электронов. Кстати, видимое вещество Вселенной существует по большей части как раз в форме плазмы; из нее состоят Солнце, звезды и межзвездный газ.
В данном же случае для нас интересно то, что атомы, лишенные электронов, обладают электрическим зарядом. А стало быть, ими можно управлять при помощи электромагнитных полей. Так, например, в термоядерных реакторах типа «токамак» именно с помощью таких полей плазме стремятся придать форму тонкого кольцевого шнура, из которого потом собираются черпать энергию.
Таким образом, плазму можно удерживать в определенном объеме и придать ей нужную форму. К примеру, плазме можно придать форму листа. Этим, кстати, уже пользуются на практике. Так в 1995 г. физик Эдди Гершкович из Брукхейвенской национальной лаборатории (Лонг-Айленд, штат Нью-Йорк) придумал так называемое «плазменное окно».
Понадобилось оно ему вот для чего. В некоторых областях промышленности, например в ракетной, наряду с обычной электрической или газовой сваркой применяется и электронная, когда две металлические детали соединяют между собой, нагревая их края пучком электронов. Такой способ сваривать металлы быстрее, чище и дешевле, чем обычная сварка. Но есть у него и недостаток — электронную сварку необходимо осуществлять в вакууме. Иначе в сварной шов тут же попадают примеси из окружающего воздуха и качество соединения резко ухудшается.
В общем, такой сваркой удобно пользоваться в условиях космического вакуума, но весьма проблематично на Земле. Приходится помещать свариваемые части изделия в вакуумную камеру. Ну, а. если ведется сварка дюз огромной ракеты, значит, получается, и вакуумная камера должна быть соответствующих размеров?..
И тогда Гершкович пошел на хитрость. Он предложил изолировать от атмосферы только ту часть свариваемого изделия, где сварка ведется как раз в данный момент. А для этого прикрыть данный фрагмент своеобразным «плазменным флюсом». При обычной сварке, как известно, именно флюс, плавясь, прикрывает непроницаемой для воздуха коркой место сварки. А тут роль флюса выполняет плазма, которую получают в плазмогенераторе — устройстве около 1 м в высоту и порядка 30 см в диаметре. Внутри его газ нагревается до температуры 6500 °C, и получается плазма, которая сразу же попадает в ловушку электромагнитного поля и обволакивает место сварки. При этом частицы плазмы, как и любого газа, оказывают давление, которое не дает воздуху прорваться к месту сварки, и обеспечивают надлежащее качество сварного шва.
Но можно ли использовать плазменный «щит» против ударов ракет и снарядов? По идее, не так сложно представить себе некий генератор плазмы, который будет формировать сильную струю, которая заставит взрываться и плавиться летящие ракеты и снаряды еще на подлете к цели.
Но для работы такого генератора опять-таки понадобится немалое количество энергии. Кроме того, плазменное поле как разновидность электромагнитного более действенно против тел, имеющих электрический заряд. Такой заряд довольно просто навести в металле.
Но что будет, если кому-то в голову придет идея вспомнить старое?.. Некогда стреляли каменными ядрами, а в XXI веке можно стрелять, например, снарядами с керамическими наконечниками…
Придется, видимо, подумать о многослойной защите. Возможно, каждый слой сам по себе не будет достаточно прочным, чтобы остановить пушечное ядро, но вместе они сделают это достаточно эффективно.
Попробуем же представить себе структуру такого силового поля. Первый, внешний, слой, к примеру, может представлять собой нечто вроде плазменного щита, где плазма разогрета до температуры, достаточной для испарения металлов. Затем следует второй слой, представляющий собой решетку из высокоэнергетических лазерных лучей. Она будет испарять те объекты (скажем, керамические стержни), которые прорвались через первую линию обороны.
Далее — третий рубеж защиты, представляющий собой пространственную решетку из «углеродных нанотрубок». Такие трубки во много раз прочнее стали.
Пока самая длинная из полученных в мире углеродных нанотрубок имеет длину всего около 15 мм, но, вероятно, в будущем технологи смогут создавать углеродные нанотрубки произвольной длины и плести из них сети чрезвычайной прочности. Эти сети будут вылавливать те объекты, которые смогут проникнуть через два предыдущих рубежа защиты.
Экран из нанотрубок будет невидим, так как каждая отдельная нанонить по толщине сравнима с атомом. А значит, ей будет свойственен один недостаток — она не сможет задерживать лазерное излучение. Поэтому, чтобы остановить лазерный луч, наш многослойной щит должен будет обладать еще и сильно выраженным свойством фотохроматичности, или переменной прозрачности.
Читать дальшеИнтервал:
Закладка: