Шон Кэрролл - Вечность. В поисках окончательной теории времени
- Название:Вечность. В поисках окончательной теории времени
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:101
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шон Кэрролл - Вечность. В поисках окончательной теории времени краткое содержание
Вечность. В поисках окончательной теории времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако что, если вначале система не будет находиться в низкоэнтропийном состоянии? Что, если начать рассматривать ее в состоянии равновесия? Если второе начало термодинамики абсолютно истинно и энтропия никогда не уменьшается, то по достижении состояния равновесия система остается в нем навсегда. Но в вероятностном мире Больцмана это не совсем верно. С высокой вероятностью система, пришедшая к равновесию, действительно продолжит пребывать в этом равновесном состоянии или в состоянии, близком к нему. Однако если подождать достаточно долго, то мы непременно заметим случайные отклонения от этого состояния. И если время ожидания будет очень большим, то мы неминуемо увидим и чрезвычайно большие флуктуации.
Рис. 10.3.Изменение энтропии в перегороженном контейнере с газом, начиная с состояния равновесия. Большую часть времени удерживается состояние, близкое к максимальной энтропии, но периодически можно заметить небольшие флуктуации в сторону более низкоэнтропийных состояний. Обратите внимание на сильно увеличенный масштаб по вертикальной оси; типичные флуктуации очень малы. Стрелкой с буквой x указан возврат к равновесному состоянию после относительно крупной флуктуации
На рис. 10.3 представлена эволюция энтропии в перегороженном контейнере с газом, содержащем 2000 частиц, но на этот раз – в более поздний период времени, после достижения равновесного состояния. Обратите внимание на то, что теперь мы рассматриваем изменения энтропии в огромном приближении: если графики в главе 8 демонстрировали изменение энтропии в диапазоне значений от 0,75 до 1, то здесь мы рассматриваем диапазон от 0,997 до 1.
То, что мы видим, – это небольшие отклонения от равновесного значения, в котором энтропия максимальна, а молекул примерно поровну в обеих половинах контейнера. И это совершенно логично, учитывая условия эксперимента: большую часть времени справа и слева от перегородки находится равное число частиц, но иногда может возникать небольшой перекос в ту или в другую сторону, соответствующий чуть меньшему значению энтропии. Абсолютно так же ситуация выглядит и при подбрасывании монеты: в среднем в длинной последовательности подбрасываний орел и решка выпадают одинаковое число раз, но если подождать достаточно долго, то нам будут встречаться подпоследовательности, в которых монета приземлялась на одну сторону много раз подряд.
Отклонения, которые мы здесь видим, очень малы, но, с другой стороны, мы не так уж долго ждали. Если растянуть эксперимент на более длительный период – и здесь имеется в виду гораздо более длительный период, то энтропия в конечном итоге уменьшится до исходного значения, соответствующего конфигурации, при которой 80 % частиц находилось с одной стороны от перегородки, а 20 % частиц – с другой. Также не забывайте о том, что этот график иллюстрирует поведение энтропии для системы с 2000 частиц; в реальном мире, где любой макроскопический объект содержит намного больше частиц, флуктуации энтропии соответственно намного меньше и встречаются реже. Тем не менее они обязательно присутствуют. Их не может не быть – это неизбежное следствие вероятностной природы энтропии.
Таким образом, мы подошли к финальному предположению Больцмана: возможно, Вселенная именно такова. Возможно, время вечно и фундаментальные физические законы – ньютоновы и обратимы, и предположения, лежащие в основе теоремы о возвращении, верны. [184]И, следовательно, вполне можно допустить, что график изменения энтропии во времени, показанный на рис. 10.3, показывает, как на самом деле изменяется энтропия реальной Вселенной. Антропный принцип
Однако, скажете вы, такого не может быть. На этом графике энтропия половину времени возрастает, а половину времени убывает. В реальном мире все совсем не так; насколько мы можем видеть, энтропия у нас только возрастает.
Что же, отвечает Больцман, вам следует взглянуть на ситуацию шире. На этом графике показаны всего лишь крохотные флуктуации за относительно короткий период времени. Мы же, говоря о Вселенной, с очевидностью имеем в виду огромную флуктуацию энтропии, вероятность появления которой крайне мала, а длительность, наоборот, чрезвычайно велика. В целом, график энтропии Вселенной очень похож на тот, что изображен на рис. 10.3, а энтропия нашей локальной наблюдаемой части Вселенной соответствует лишь небольшому его участку – рядом с точкой, обозначенной x, где наблюдается процесс возвращения обратно к равновесному состоянию после флуктуации. Если здесь помещается вся история изведанной Вселенной, то нет ничего странного в том, что на своем веку мы наблюдаем второе начало термодинамики в действии. В то же время, если рассматривать сверхдлинные периоды, то окажется, что энтропия всего лишь немного колеблется около максимального значения.
Но, снова возразите вы, не готовые сдаваться без боя, почему мы живем именно на этом конкретном участке кривой, в период, непосредственно следующий за гигантской флуктуацией энтропии? Мы уже согласились с тем, что подобные флуктуации неимоверно редки. Не было бы логичнее оказаться в каком-то более типичном, среднестатистическом периоде истории Вселенной, где все, по сути, находится в равновесии?
Разумеется, Больцман предвидел это ваше возражение. И в этот момент он совершает поразительно современный ход – апеллирует к антропному принципу. По сути, антропный принцип – это идея о том, что любое разумное описание Вселенной вокруг нас должно учитывать тот факт, что мы существуем. Оно может принимать множество разных форм: от бесполезно слабого «тот факт, что жизнь существует, диктует нам, что законы физики должны быть совместны с существованием жизни» до смехотворно сильного «законы физики должны были принять ту форму, в которой мы их знаем, потому что существование жизни – необходимое условие». Споры вокруг статуса антропного принципа: есть ли в нем смысл? можно ли считать его научным? – разгораются весьма нешуточные, но редко приводят к каким бы то ни было полезным выводам или результатам.
К счастью, нас (и Больцмана) вполне устраивает благоразумная усредненная версия антропного принципа. А именно представьте себе, что реальная Вселенная намного больше (в пространственном измерении, во временном или в обоих) той части, которую мы в состоянии непосредственно наблюдать. Помимо этого, вообразите, что условия в разных фрагментах этой глобальной Вселенной очень сильно различаются. Например, в них наблюдается разная плотность вещества, а может быть, доходит даже до того, что действуют разные локальные физические законы. Каждую из таких областей можно назвать «Вселенной», а весь набор – «Мультиленной». Разные Вселенные в пределах Мультиленной могут быть физически связаны, а могут не иметь точек соприкосновения; для наших текущих целей это неважно. Наконец, представьте себе, что часть этих областей обладает благоприятными условиями для существования жизни, а часть – нет. (В этом месте всегда неизбежно возникает определенное недопонимание, поскольку в глобальном контексте мы знаем о «жизни» не так уж много.) Тогда – и этот довод выглядит совершенно безукоризненно – как ни крути, мы находимся в одной из тех частей Вселенной, где существование жизни допускается, но не в других, враждебных нам частях. Кажется, что это утверждение не несет смысла, но это не так. Оно иллюстрирует эффект выбора , искажающий наш взгляд на Вселенную в целом: мы не видим картины целиком; нашему восприятию доступен только один фрагмент, который вполне может оказаться абсолютно нерепрезентативным.
Читать дальшеИнтервал:
Закладка: