Журнал «Новый мир» - Новый мир. № 7, 2003
- Название:Новый мир. № 7, 2003
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Новый мир» - Новый мир. № 7, 2003 краткое содержание
Ежемесячный литературно-художественный журнал
Новый мир. № 7, 2003 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Тем не менее то математическое образование, которому посвящен сайт, не предполагает особой массовости — оно, конечно, не всеобще. Но нет и никакой особой элитарности. Сообщение о 66-й Московской математической олимпиаде: «Городской тур для 8 — 11 классов состоялся в воскресенье, 2 марта 2003 года с 10 часов утра в зданиях МГУ на Воробьевых горах. В нем приняли участие более 2307 человек» (http://www.mccme.ru/olympiads/mmo).
На математический праздник, куда приходят ученики 6-х или 7-х классов, тоже собралось около 1238 участников.
Это совсем не мало. Даже для очень большого города. И это значит, что проблемы, которые решает Центр, касаются многих тысяч учеников, их родителей и учителей. А ведь олимпиады проходят не только в Москве, и все результаты и задачи доступны именно на сайте.
Я довольно давно наблюдаю происходящее в Московском университете в дни городских олимпиад. Сначала как участник, потом как отец участника. Все здесь понятно и знакомо и совершенно неотъемлемо.
Когда дети выходят из аудиторий возбужденные, растерянные, сосредоточенные, еще не отпущенные на волю цепкими лапками нерешенной задачи, они очень красивы. Красивыми их делает одухотворенность — отчетливо видимая работа мысли. Вдруг: как же я не догадался! как же все просто на самом-то деле! Почти отчаяние, почти слезы. Ну что ж, бывает.
Идеи МЦНМО правильные и нужные. Конечно, необходимо объединять усилия преподавателей математики в разных школах города и страны. Конечно, необходима информация о кружках и математических классах. Необходимо издание научно-популярной литературы о математике и физике, которое практически прервалось в девяностые и вновь понемногу начинается в последние годы, в частности, издательством МЦНМО. И одной из важнейших задач является переиздание огромной, накопленной за целые десятилетия замечательной научно-популярной литературы.
Один из самых впечатляющих проектов Центра — собрание всех номеров журнала «Квант» (http://kvant.mccme.ru) начиная от самого первого номера 1970 года. Когда вышел первый номер, я был еще слишком юным, чтобы читать этот трудный журнал, и прочел я его уже на сайте Центра. С трепетом и замирающим сердцем. Уже за одно только это ощущение я благодарен создателям проекта.
Он еще не завершен. Но уже сегодня на сайте выставлены журналы с 1970 по 1988 год, за 1991-й и отдельные номера последних лет. Все журналы необходимо собрать и выставить. Я верю, что это будет сделано.
Журнал «Квант» — это научный журнал для школьников, посвященный математике и физике. Людям моего поколения не нужно объяснять, что это такое. В последние годы, конечно, тираж журнала резко упал, и это связано с целым комплексом условий — в частности, с катастрофическим падением престижа математического и вообще фундаментального образования. (Об этом много и глубоко говорит академик Арнольд, собрание статей которого — один из самых интересных материалов сайта Центра.) «Квант» продолжает выходить. Когда-то он был практически единственным всесоюзным научно-популярным изданием такого высокого уровня, которое собрало лучших математиков и физиков страны. Огромное внимание «Кванту» уделял великий математик Андрей Колмогоров.
Журнал пронизан ощущением поиска и открытия. Рассказать о глубокой математической проблеме, не привлекая (или почти не привлекая) сложный технический аппарат, на овладение которым требуются иногда годы напряженной работы, очень трудно, но авторы «Кванта» находили и находят нужные слова.
Сейчас очевидно, что собрание статей журнала — это золотой фонд и математического образования, и даже математической науки — потому что статья для «Кванта» всегда требовала от математика отойти на шаг от своей узкой проблематики и взглянуть на нее глазами заинтересованного социума — то есть извне. А это совершенно необходимо, например, для того, чтобы понять: нужно ли кому-то еще то, что я делаю. К статьям журнала следует возвращаться — и снова перечитывать и переоткрывать проблемы и идеи, однажды поднятые на его страницах. Теперь все это есть на сайте.
Естественным дополнением и развитием статей «Кванта» является серия «Библиотека математического просвещения» — издание лекций, прочитанных ведущими математиками на Малом мехмате — математических кружках мехмата МГУ (http://www.mccme.ru/mmmf-lectures/books). Очень многие книги серии доступны на сайте.
Математика, такая, какой она предстает на страницах «Кванта», та, которой занимается Малый мехмат, — это не тот предмет, которому, как правило, учат на уроках геометрии или алгебры в школе.
Здесь и не нужно, и не достаточно механических навыков и стереотипных умений. Здесь нужны другие способности. Это математика подлинная, которая, конечно, не сводится к знанию таблицы умножения или даже умению дифференцировать.
Это задачи, чьи решения внезапно рождаются из внешнего первоначального хаоса условий, как «магический кроссворд с проблеском истины в перспективе» (Сергей Гандлевский говорил это о поэзии, а мне всегда казалось, что и о математике тоже).
Эти задачи требуют не припоминания вызубренных заранее знаний и навыков, а умения думать сейчас и здесь, умения так повернуть условия, чтобы вдруг проявился этот неожиданный, укрывшийся в условиях порядок. Человек, даже очень хорошо выучивший школьный курс, но не понявший, как же соотносятся части того целого, которое называется языком математики (пускай даже самого начального), часто не может решить простой задачи, с какой легко справляется шестиклассник на кружке.
Николай Работнов в своей статье «Гимн Языку» писал:
«Высказывание Гиббса „Математика — это язык!“ (сделанное в университетской дискуссии о приоритетах — математика или иностранные языки) цитируют нередко, но по-настоящему не воспринимают. А воспринимать его надо буквально. На этом языке написана великая литература. Можно даже сказать — величайшая, потому что, например, по количеству несомненно гениальных авторов — их сотни — с ней не сравнится ни одна из национальных литератур на естественных языках…
Одним из признаков высшего совершенства в искусстве является лаконизм. Смею сказать — вряд ли что-нибудь сравнится в этом отношении с шедеврами математики и теоретической физики. Здесь нередки случаи, когда итогом жизни гения являются всего несколько символьных строчек. Достаточно привести один пример. Уравнения электромагнитного поля (уравнения Максвелла) можно записывать по-разному, но в самой компактной, так называемой тензорной, форме они содержат всего пятнадцать символов. В этой строчечке умещается вся классическая электродинамика, она описывает принцип и детали действия всех электрических машин и приборов, распространение радиоволн и геометрическую оптику. Ее содержание расшифровывается до сих пор, разворачиваются все новые и новые лепестки этого фантастического веера» (http://magazines.russ.ru/znamia/2002/6/rabot.html).
Читать дальшеИнтервал:
Закладка: