Журнал «Новый мир» - Новый мир. № 7, 2003
- Название:Новый мир. № 7, 2003
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Новый мир» - Новый мир. № 7, 2003 краткое содержание
Ежемесячный литературно-художественный журнал
Новый мир. № 7, 2003 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ученик, который приходит на кружок, приходит на математическую олимпиаду, который перелистывает страницы «Кванта», сталкивается именно с этим великим или даже величайшим языком.
Математика ни в коем случае не сводится к набору инструкций или правил действия с числами, формулами или геометрическими фигурами. (Нужно сказать, что на сайте находится одно из лучших собраний геометрических задач с решениями — http://zadachi.mccme.ru, — но, не знаю почему, оно очень часто оказывается недоступно, хотелось бы, чтобы такого рода технических накладок было поменьше — эти мелочи портят и убивают очень хорошо сделанную огромную работу.) Все это необходимо уметь, но гораздо важнее другие умения: например, способность отстраниться, отодвинуться от задачи и взглянуть на нее с позиций более общих или, напротив, попытаться сначала найти частное решение для простого случая, которое потом можно было бы обобщить.
Это та математика, которая несравнимо ближе к подлинной математической науке, чем стандартный общешкольный инструктаж.
На сайте, кроме полного перечня всех математических олимпиад и их результатов, есть и список московских математических школ. Здесь есть ссылки на сайты 2-й (http://www.school2.ru), 57-й (http://www.sch57.msk.ru), 91-й (http://www.91.ru) и других знаменитых и новых школ. Конечно, эти школы предъявляют к ученику довольно высокие требования, и если на кружок может прийти любой ученик, то поступить, скажем, во 2-ю школу смогут немногие — уже, как правило, выбравшие математическое образование. Но и эти школы совершенно необходимы, потому что, если ребенок значительно опережает по своему математическому развитию сверстников, его потребность в познании нужно удовлетворять, его энергию нужно использовать в мирных целях, а то ведь могут пострадать и он сам, и окружающие. Если ребенок хочет учиться математике, его нужно учить — то есть создавать максимально благоприятные условия и со стороны учителей, и, что также крайне важно, со стороны коллектива одноклассников. Это и пытаются дать математические школы, хотя я далек от идеализации сегодняшнего состояния дел в специализированном математическом образовании школьников.
Одним из самых интересных и важных материалов, представленных на сайте, является, как уже было сказано, собрание статей академика Владимира Арнольда, посвященных математическому образованию (http://www.mccme.ru/edu/index.php?ikey=articles).
Состояние этого образования вызывает у него крайнюю озабоченность. В статье «Математика и математическое образование в современном мире» он пишет:
«Выхолощенное и формализованное преподавание математики на всех уровнях сделалось, к несчастью, системой. Выросли целые поколения профессиональных математиков и преподавателей математики, умеющих только это и не представляющих себе возможности какого-либо другого преподавания математики.
Наиболее характерными приметами формализованного преподавания является изобилие немотивированных определений и непонятных (хотя логически безупречных) доказательств. Отсутствие примеров, отсутствие анализа предельных случаев и предела применимости математических теорий, отсутствие чертежей и рисунков — столь же постоянный недостаток математических текстов, как и отсутствие внематематических приложений и мотивировок понятий математики.
Уже Пуанкаре отмечал, что есть только два способа научить дробям — разрезать (хотя бы мысленно) либо пирог, либо яблоко. При любом другом способе обучения (аксиоматическом или алгебраическом) школьники предпочитают складывать числители с числителями, а знаменатели — со знаменателями.
Математика является экспериментальной наукой — частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса — каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно быть неотъемлемой частью математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений (и computer science) сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам».
Арнольд пишет и о том, что Колмогоров приглашал его участвовать в разработке учебников математики, по которым учились в семидесятые — восьмидесятые годы советские школьники, и Арнольд отказался от лестного и выгодного предложения по соображениям идеологическим. Потому что нельзя начинать обучение математике с аксиом. Двенадцатилетний ребенок просто не в силах понять, зачем ему нужно специально заучивать такие интуитивно совершенно очевидные вещи, как то, например, что через две точки можно провести одну, и только одну, прямую. Нельзя учить складывать дроби, вводя Дедекиндовы сечения или кольцо Гротендика. Тем более, что исторически аксиоматика очень часто не столько основание математической теории, сколько ее завершение.
Но нельзя и отказываться от доказательств тоже. Иначе математика становится тем самым набором рецептов и инструкций. Результаты — это плоды, и если я не представляю себе, как они получены, то не представляю себе и того, как можно получать новые результаты. Тогда я думаю, что яблоки растут на витринах супермаркета. А если я это усвоил с детства, то меня уже не переубедить.
Доказательства — это корни и ветви единого математического дерева. Без них математика так же мертва, как и без приложений. А доказательства должны быть корректными и строгими, что само по себе требует изучения логики и оснований математики, в частности анализа аксиом.
Владимир Успенский пишет в своей книге «Труды по нематематике»: «В 50-х годах прошлого века, по возвращении с индийских научных конференций, мои московские математические коллеги с изумлением рассказывали мне, что в Индии математику — при стандартном разделении наук на естественные и гуманитарные — относят к наукам гуманитарным. Хотя такое местоуказание математики, на мой взгляд, совершенно справедливо, я все же буду придерживаться традиционного для отечественной культуры противопоставления» (http://www.mccme.ru/free-books/usp.htm).
Арнольд — крупнейший в мире специалист в области дифференциальных уравнений — области, самой близкой к приложениям как в теоретической физике, так и в экономике. И его взгляд на математическое образование во многом этим определяется. Владимир Успенский — логик, и, конечно, его более интересует гуманитарная составляющая математического знания. И та и другая точка зрения совершенно правомерны и необходимы, хотелось бы только, чтобы они не входили в прямой конфликт, а дополняли друг друга и в научном исследовании, и в математическом образовании школьников.
Читать дальшеИнтервал:
Закладка: