Л. Наумова - Основы общей экологии
- Название:Основы общей экологии
- Автор:
- Жанр:
- Издательство:Логос
- Год:2003
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Л. Наумова - Основы общей экологии краткое содержание
В учебнике рассматривается весь спектр вопросов общей (биологической), экологии: история, экология видов (аутэкология – факторы среды, адаптации организмов, жизеннные стратегии), популяционная экология (характеристика популяций, их динамика и взаимоотношения), экология экосистем (функциональная структура, потоки энергии, разнообразие экосистем и их динамика), биосфера (структура и круговороты основных биогенов, ноосфера).
Для студентов высших учебных заведений, обучающихся по направлениям и специальностям: «Экология», «Биология», «Медицина», «Сельское хозяйство». Представляет интерес для научных работников в области биологии, экологии, лесного и сельского хозяйства.
Основы общей экологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
11. Какую роль играет течение в жизни пресноводных экосистем?
12. Расскажите о влиянии течений на экосистемы океана.
13. Перечислите основные вещества, загрязняющие атмосферу.
2.5. Комплексные градиенты
Группа экологических факторов, которые изменяются сопряженно, называется комплексным градиентом.
Р. Уиттекер (1980) писал, что экологических факторов, которые не объединялись бы в комплексные градиенты, нет.
Комплексные градиенты, как правило, формируются косвенными факторами, подобными высоте над уровнем моря, географической широте или расстоянию от океана. Могут взаимодействовать и объединяться в комплексные градиенты и прямодействующие экологические факторы. Например,повышение интенсивности выпаса вызывает уплотнение почвы, а на влажных почвах в степных районах – и их засоление за счет усиления капиллярного подъема воды, несущей соли к поверхности почвы. Изменение увлажнения влияет на биохимические процессы, протекающие в почве, и на активность различных групп почвенной фауны и микроорганизмов, которые осуществляют гумификацию или минерализацию органического вещества.
Изменение температуры почвы также может вызвать цепную реакцию процессов изменения режима увлажнения и физико-химических преобразований.
Весьма интересный вариант комплексного градиента, который связывает воедино такие разные факторы, как свет и эдафические (почвенные) факторы, описал А. Тилман (Tilman, 1990): при крайней скудности почвенных ресурсов (сухость, низкое содержание элементов питания, высокая концентрация токсичных солей) растения не испытывают недостатка в свете, так как растут редко и не затеняют друг друга. При изобилии почвенных ресурсов растения образуют густые заросли – деревья в дубово-липовом или буковом лесу, тростник в низовьях рек субаридной зоны, канареечник на богатых прирусловых наилках в поймах рек лесной зоны, и в дефиците оказывается свет, так как растения затеняют друг друга. Этот градиент будет рассмотрен в разделе 8.2.
Комплексные градиенты, которые влияют на состав и структуру экосистем в большей степени, чем другие, называются ведущими. В составе таких ведущих градиентов всегда есть лимитирующий фактор, т.е. условие, или ресурс, которое находится в минимуме или максимуме и в большей степени, чем другие условия, влияет на состояние организмов, популяций или состав целой экосистемы (см. 3.3).
1. Что такое «комплексный градиент»?
2. Приведите примеры комплексных градиентов, формируемых прямыми и косвенными факторами.
3. Расскажите о комплексном градиенте, описанном Д. Тилманом.
2.6. Основные среды жизни
Рассмотренные факторы и комплексные градиенты формируют жизненные среды – водную, наземно-воздушную, почвенную. Кроме того, для многих организмов жизненной средой являются другие организмы.
Водная среда жизни.Это самая древняя среда, в которой жизнь возникла и долго эволюционировала еще до того момента, как первые организмы появились на суше. По составу водной среды жизни различаются два ее основных варианта: пресноводная и морская среды.
Водой покрыто более 70% поверхности планеты. Тем не менее, за счет сравнительной выравненности условий этой среды («вода всегда мокрая») разнообразие организмов в водной среде намного меньше, чем на суше. Лишь каждый десятый вид царства растений связан с водной средой, разнообразие водных животных несколько выше. Общее соотношение числа видов «суша/вода» – около 1:5.
Плотность воды выше плотности воздуха в 800 раз. И давление на населяющие ее организмы также много выше, чем в наземных условиях: на каждый 10 м глубины оно возрастает на 1 атм. Одно из основных направлений приспособления организмов к жизни в водной среде – повышение плавучести за счет увеличения поверхности тела и формирования тканей и органов, содержащих воздух. Организмы могут парить в воде (как представители планктона – водоросли, простейшие, бактерии) или активно перемещаться, как рыбы, формирующие нектон. Значительная часть организмов прикреплена к поверхности дна или перемещается по ней. Как уже отмечалось, важным фактором водной среды является течение.
Основу продукции большинства водных экосистем составляют автотрофы, использующие солнечный свет, пробивающийся через толщу воды. Возможность «пробивания» этой толщи определяется прозрачностью воды. В прозрачной воде океана в зависимости от угла падения солнечного света автотрофная жизнь возможна до глубины 200 м в тропиках и 50-ти м в высоких широтах (например,в морях Северного Ледовитого океана). В сильно взмученных пресноводных водоемах слой, заселенный автотрофами (его называют фотическим), может составлять всего несколько десятков сантиметров.
Наиболее активно поглощается водой красная часть спектра света, поэтому, как отмечалось, глубоководья морей заселены красными водорослями, способными за счет дополнительных пигментов усваивать зеленый свет. Прозрачность воды определяется несложным прибором – диском Секки, который представляет собой окрашенный в белый цвет круг диаметром 20 см. О степени прозрачности воды судят по глубине, на которой диск становится неразличимым.
Важнейшей характеристикой воды является ее химический состав – содержание солей (в том числе биогенов), газов, ионов водорода (рН). По концентрации биогенов, особенно фосфора и азота, водоемы разделяются на олиготрофные, мезотрофные и эвтрофные. При повышении содержания биогенов, скажем, при загрязнении водоема стоками, происходит процесс эвтрофикации водных экосистем (см. 12.7).
Содержание кислорода в воде примерно в 20 раз ниже, чем в атмосфере, и составляет 6–8 мл/л. Оно снижается при повышении температуры, а также в стоячих водоемах в зимнее время, когда вода изолирована от атмосферы слоем льда. Снижение концентрации кислорода может стать причиной гибели многих обитателей водных экосистем, исключая особо устойчивые к дефициту кислорода виды, подобные карасю или линю, которые могут жить даже при снижении содержания кислорода до 0,5 мл/л.
Содержание углекислого газа в воде, напротив, выше, чем в атмосфере. В морской воде его может содержаться до 40–50 мл/л, что примерно в 150 раз выше, чем в атмосфере. Потребление углекислого газа фитопланктоном при интенсивном фотосинтезе не превышает 0,5 мл/л в сутки.
Концентрация ионов водорода в воде (рН) может меняться в пределах 3,7–7,8. Нейтральными считаются воды с рН от 6,45 до 7,3. Как уже отмечалось, с понижением рН биоразнообразие организмов, населяющих водную среду, быстро убывает. Речной рак, многие виды моллюсков гибнут при рН ниже 6, окунь и щука могут выдержать рН до 5, угорь и голец выживают при понижении рН до 5–4,4. В более кислых водах сохраняются лишь некоторые виды зоопланктона и фитопланктона. Кислотные дожди, связанные с выбросами в атмосферу больших количеств оксидов серы и азота промышленными предприятиями, стали причиной подкисления вод озер Европы и США и резкого обеднения их биологического разнообразия.
Читать дальшеИнтервал:
Закладка: