БСЭ - Большая Советская энциклопедия (Пр)
- Название:Большая Советская энциклопедия (Пр)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ - Большая Советская энциклопедия (Пр) краткое содержание
Большая Советская энциклопедия (Пр) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида
a k j k( x ),
где (j 1,..., j n—заданные функции, a a 1,..., a n— произвольные числа. Обычно это алгебраические многочлены
a kx k
или тригонометрические полиномы
а 0 + ( a k cos kx + b k sin kx ) .
Рассматриваются также полиномы по ортогональным многочленам , по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P ( x ) /Q ( x ) , где в качестве Р и Q берутся алгебраические многочлены заданной степени.
В последнее время (60—70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [ a, b ] разбивается точками a = x 0 < x 1 < ... < x n = b, на каждом отрезке [ x k, x k+1 ] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [ а, b ] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах x k приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов x k правильного их расположения на отрезке [ а, b ] . Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.
Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.
Теория приближений функций берёт начало от работ П. Л. Чебышева . Он ввёл одно из основных понятий теории — понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f ( x ) полиномами a k j k( x ) в метрике С называется величина
E n = min || f -
a k j k( x )|| c,
где минимум берётся по всем числам а 1,..., a n. Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции x n+1 на отрезке [—1, 1] в метрике С алгебраическими многочленами степени n равно 1/2 n, а многочлен наилучшего приближения таков, что для него
x n+1 - = (1/2 n) cos ( n + 1) arccos x .
Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен , в том и только в том случае является многочленом наилучшего приближения непрерывной функции f в метрике С [—1, 1], если существуют n + 2 точки -1 £ x 1 < x 2 <... < x n+2 £ 1, в которых разность f ( x ) — 2
принимает максимальное значение своего модуля с последовательно чередующимися знаками.
Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.
С начала 20 в. началось систематическое исследование поведения при n ® ¥ последовательности E n — наилучших приближений функции f алгебраическими (или тригонометрическими) многочленами. С одной стороны, выясняется скорость стремления к нулю величин E n
в зависимости от свойств функции (т. н. прямые теоремы теории приближений), а с другой — изучаются свойства функции по последовательности её наилучших приближений (обратные теоремы теории приближений). В ряде важных случаев здесь получена полная характеристика свойств функций. Приведём две такие теоремы.
Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка
E n £ Aq n,
где q < 1 и А — некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).
Для того чтобы функция f периода 2p имела производную порядка r, r = 0 , 1,2,..., удовлетворяющую условию
| f (r)( x + h ) - f (r)( x )| £ M| h | a ,
0 < a < 1, М — некоторое положительное число, или условию
| f (r)( x + h ) - 2 f (r)( x ) + f (r)( x - h )| £ M| h | a
(в этом случае a = 1), необходимо и достаточно, чтобы для наилучших приближений функции f тригонометрическими полиномами была справедлива оценка
Е п £ А/n r+ a ,
где А — некоторое положительное число, не зависящее от n. В этом утверждении прямая теорема была в основном получена Д. Джексоном (США), а обратная является результатом исследований С. Н. Бернштейна , Ш. Ж. Ла Валле Пуссена и А. Зигмунда (США). Характеристика подобных классов функций, заданных на отрезке, в терминах наилучших приближении алгебраическими многочленами оказалась невозможной. Её удалось получить, привлекая к рассмотрению приближение функций с улучшением порядка приближения вблизи концов отрезка.
Возможность характеризовать классы функций с помощью приближений их полиномами нашла приложение в ряде вопросов математического анализа. Развивая исследования по наилучшим приближениям функций многих переменных полиномами, С. М. Никольский построил теорию вложений важных для анализа классов дифференцируемых функций многих переменных, в которой имеют место не только прямые, но и полностью обращающие их обратные теоремы.
Читать дальшеИнтервал:
Закладка: