БСЭ - Большая Советская энциклопедия (Пр)

Тут можно читать онлайн БСЭ - Большая Советская энциклопедия (Пр) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская энциклопедия (Пр)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.86/5. Голосов: 71
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ - Большая Советская энциклопедия (Пр) краткое содержание

Большая Советская энциклопедия (Пр) - описание и краткое содержание, автор БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская энциклопедия (Пр) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская энциклопедия (Пр) - читать книгу онлайн бесплатно, автор БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Н. И. Левитский.

Пространство

Простра'нствов математике, логически мыслимая форма (или структура), служащая средой, в которой осуществляются другие формы и те или иные конструкции. Например, в элементарной геометрии плоскость или пространство служат средой, где строятся разнообразные фигуры. В большинстве случаев в П. фиксируются отношения , сходные по формальным свойствам с обычными пространственными отношениями (расстояние между точками, равенство фигур и др.), так что о таких П. можно сказать, что они представляют логически мыслимые пространственно-подобные формы. Исторически первым и важнейшим математическим П. является евклидово трёхмерное П., представляющее приближённый абстрактный образ реального П. Общее понятие «П.» в математике сложилось в результате постепенного, всё более широкого обобщения и видоизменения понятий геометрии евклидова П. Первые П., отличные от трёхмерного евклидова, были введены в 1-й половине 19 в. Это были пространство Лобачевского и евклидово П. любого числа измерений. Общее понятие о математическом П. было выдвинуто в 1854 Б. Риманом ; оно обобщалось, уточнялось и конкретизировалось в разных направлениях: таковы, например, векторное пространство , гильбертово пространство , риманово пространство , функциональное пространство , топологическое пространство . В современной математике П. определяют как множество каких-либо объектов, которые называются его точками; ими могут быть геометрические фигуры, функции, состояния физической системы и т.д. Рассматривая их множество как П., отвлекаются от всяких их свойств и учитывают только те свойства их совокупности, которые определяются принятыми во внимание или введёнными по определению отношениями. Эти отношения между точками и теми или иными фигурами, т. е. множествами точек, определяют «геометрию» П. При аксиоматическом её построении основные свойства этих отношений выражаются в соответствующих аксиомах.

Примерами П. могут служить: 1) метрическое П., в которых определено расстояние между точками; например, П. непрерывных функций на каком-либо отрезке [ а, b ], где точками служат функции f ( x ), непрерывные на [ а , b ] , а расстояние между f 1( x ) и f 2( x ) определяется как максимум модуля их разности: r = max÷ f 1( x ) — f 2( x )ú. 2) «П. событий», играющее важную роль в геометрической интерпретации теории относительности. Каждое событие характеризуется положением — координатами х, у, z и временем t, поэтому множество всевозможных событий оказывается четырёхмерным П., где «точка» — событие определяется 4 координатами х, у, z, t. 3) Фазовые П., рассматриваемые в теоретической физике и механике. Фазовое П. физические системы — это совокупность всех её возможных состояний, которые рассматриваются при этом как точки этого П. Понятие об указанных П. имеет вполне реальный смысл, поскольку совокупность возможных состояний физической системы или множество событий с их координацией в П. и во времени вполне реальны. Речь идёт, стало быть о реальных формах действительности, которые, не являясь пространственными в обычном смысле, оказываются пространственно-подобными по своей структуре. Вопрос о том, какое математическое П. точнее отражает общие свойства реального П., решается опытом. Так, было установлено, что при описании реального П. евклидова геометрия не всегда является достаточно точной и в современной теории реального П. применяется риманова геометрия (см. Относительности теория , Тяготение ). По поводу П. в математике см. также статьи Геометрия , Математика , Многомерное пространство .

А. Д. Александров.

Пространство и время

Простра'нство и вре'мя,всеобщие формы существования материи . П. и в. не существуют вне материи и независимо от неё.

Пространственными характеристиками являются положения относительно др. тел (координаты тел), расстояния между ними, углы между различными пространственными направлениями (отдельные объекты характеризуются протяжённостью и формой, которые определяются расстояниями между частями объекта и их ориентацией). Временные характеристики — «моменты», в которые происходят явления, продолжительности (длительности) процессов. Отношения между этими пространственными и временными величинами называются метрическими. Существуют также и топологические характеристики П. и в. — «соприкосновение» различных объектов, число направлений. С чисто пространственными отношениями имеют дело лишь в том случае, когда можно отвлечься от свойств и движения тел и их частей: с чисто временными — в случае, когда можно отвлечься от многообразия сосуществующих объектов.

Однако в реальной действительности пространственные и временные отношения связаны друг с другом. Их непосредственное единство выступает в движении материи; простейшая форма движения — перемещение — характеризуется величинами, которые представляют собой различные отношения П. и в. (скорость, ускорение) и изучаются кинематикой . Современная физика обнаружила более глубокое единство П. и в. (см. Относительности теория ), выражающееся в совместном закономерном изменении пространственно-временных характеристик систем в зависимости от движения последних, а также в зависимости этих характеристик от концентрации масс в окружающей среде.

Для измерения пространственных и временных величин пользуются системами отсчёта .

По мере углубления знаний о материи и движении углубляются и изменяются научные представления о П. и в. Поэтому понять физический смысл и значение вновь открываемых закономерностей П. и в. можно только путём установления их связей с общими закономерностями взаимодействия и движения материи.

Понятия П. и в. являются необходимой составной частью картины мира в целом, поэтому входят в предмет философии. Учение о П. и в. углубляется и развивается вместе с развитием естествознания и прежде всего физики . Из остальных наук о природе значительную роль в прогрессе учения о П. и в. сыграла астрономия и в особенности космология .

Развитие физики, геометрии и астрономии в 20 в. подтвердило правильность положений диалектического материализма о П. и в. В свою очередь диалектико-материалистическая концепция П. и в. позволяет дать правильную интерпретацию современной физической теории П. и в., вскрыть неудовлетворительность как субъективистского ее понимания, так и попыток «развить» её, отрывая П. и в. от материи.

Пространственно-временные отношения подчиняются не только общим закономерностям, но и специфическим, характерным для объектов того или иного класса, поскольку эти отношения определяются структурой материального объекта и его внутренними взаимодействиями. Поэтому такие характеристики, как размеры объекта и его форма, время жизни , ритмы процессов, типы симметрии, являются существенными параметрами объекта данного типа, зависящими также от условий, в которых он существует. Особенно специфичны пространственные и временные отношения в таких сложных развивающихся объектах, как организм или общество. В этом смысле можно говорить об индивидуальных П. и в. таких объектов (например, о биологическом или социальном времени).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


БСЭ читать все книги автора по порядку

БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская энциклопедия (Пр) отзывы


Отзывы читателей о книге Большая Советская энциклопедия (Пр), автор: БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x