БСЭ - Большая Советская энциклопедия (Пр)
- Название:Большая Советская энциклопедия (Пр)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ - Большая Советская энциклопедия (Пр) краткое содержание
Большая Советская энциклопедия (Пр) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Преобразования функций. Существенное значение имеет также теория групп П. для теории аналитических функций. Там рассматриваются классы функций, не изменяющихся при П., образующих некоторую группу (см. Автоморфные функции ) .
Понятие П. играет важную роль и в функциональном анализе, где рассматриваются П. одного множества функций в другое. К таким П. относятся, например, Фурье преобразование , Лапласа преобразование и др. При этих П. каждой функции f ставится по определённому правилу в соответствие другая функция j. Например, преобразование Фурье имеет вид:
.
Оно, как и преобразование Лапласа, относится к классу интегральных П., определяемых формулами вида:
.
В ряде случаев П. позволяют заменить операции над функциями более простыми операциями над их образами (например, дифференцирование — умножением на независимую переменную), что облегчает решение уравнений.
Многие уравнения можно записать в виде f = Af, где f — искомая функция, а А — символ П. В этом случае задача решения уравнения может быть истолкована как задача нахождения функции, не изменяющейся при П. Эта точка зрения, называемая принципом неподвижной точки, позволяет в ряде случаев устанавливать существование и единственность решения (см. Сжатых отображений принцип ) .
Лит.: Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Клейн Ф., Высшая геометрия, пер. с нем., М. — Л., 1939; его же, Элементарная математика с точки зрения высшей. Лекции..., пер. с нем., 2 изд., т. 2, М. — Л., 1934; Адамар Ж., Элементарная геометрия, пер. с франц., 4 изд., ч, 1, М., 1957.
Преобразование представления величины
Преобразова'ние представле'ния величины'в вычислительной технике, процесс перевода машинных переменные величин из аналоговой формы в цифровую (аналого-цифровое преобразование) или наоборот (цифро-аналоговое преобразование). П. п. в. связано, например, с необходимостью в процессе вычислений на ЦВМ вводить и выводить данные в аналоговой форме — при работе ЦВМ в системе автоматического регулирования технологическими процессами, при построении гибридных вычислительных систем и т.п. См. также Преобразователь функциональный .
Преобразователь функциональный
Преобразова'тель функциона'льный, устройство, выходной сигнал которого у связан с одним либо несколько входными сигналами x i (где i = 1, 2,...) заданным алгоритмом функционирования. В зависимости от числа входных величин различают П. ф. одной, двух и более переменных. Функциональная зависимость выходных сигналов П. ф. от входных (единственного выходного при одном входном или каждого выходного при наличии нескольких входных сигналов) может быть задана в виде таблиц, графиков, аналитических выражений. Динамическая характеристика П. ф. y ( x 1, x 2,..., x n, t ) описывается дифференциальным уравнением, в правой части которого участвуют входной сигнал и его производные по времени (в общем случае), а в левой части — выходной сигнал и его производные по времени (в общем случае). Для инженерных расчётов динамическую характеристику П. ф. обычно удобнее всего характеризовать передаточными функциями по соответствующим каналам (входным сигналам).
По виду алгоритма функционирования в пределах предполагаемой рабочей области применения П. ф. делятся на линейные (в которых функциональная зависимость описывается с достаточным приближением прямой) и нелинейные (у которых функциональная зависимость криволинейная), в том числе кусочно-линейные. В зависимости от физической природы входных и выходных сигналов различают механические, электрические, пневматические, гидравлические и смешанные, в том числе электромеханические, электрогидравлические, пневмоэлектрические П. ф. По характеру представления исходных величин различают аналоговые, цифровые и гибридные П. ф. В гибридных П. ф. одновременно используется цифровое и аналоговое представление величин. При этом обычно входной сигнал делят на две части: одна представляется в аналоговой форме, а другая — в цифровой. Поэтому в состав таких П. ф. вводят цифро-аналоговые и аналого-цифровые преобразователи.
Самыми распространёнными и важными являются П. ф. одной входной величины, которые подразделяются в зависимости от алгоритма функционирования на динамические и формирующие. В динамических П. ф. осуществляется изменение входного сигнала во времени, например интегрирование, дифференцирование, временная задержка и т.п. В формирующем П. ф. входной сигнал изменяется по масштабу (например, в пропорциональных П. ф.) или форме воздействия, например при преобразовании непрерывного сигнала в дискретный (в импульсных, модуляционных, кодирующих П. ф.) либо наоборот — дискретного сигнала в непрерывный (в дискретно-аналоговых П. ф.).
В П. ф. осуществляются как простые, так и сложные преобразования. При простых преобразованиях выходная величина физически неотделима от входной, как, например, при преобразовании температуры в термоэдс или температуры в активное сопротивление. В сложных преобразованиях имеется не менее двух простых. Например, при преобразовании активного сопротивления в силу притяжения электромагнита имеется два простых преобразования: «активное сопротивление — магнитный поток» и «магнитный поток — сила притяжения сердечника».
Важнейшая характеристика П. ф. — погрешности при преобразовании, которые могут быть случайными и систематическими. Случайные погрешности обычно имеют нормальный закон распределения, и при нескольких последовательных преобразованиях общая погрешность равна D общ , где D i— погрешности отдельных преобразований. Систематические погрешности преобразований складываются алгебраически (с учётом знаков). Не менее важная характеристика — чувствительность П. ф., т. е. отношение весьма малого изменения выходного сигнала к вызвавшему его также малому изменению входного сигнала. Для изменения чувствительности П. ф. вводится обратная связь (соответственно этому различают П. ф. с разомкнутой и замкнутой цепью воздействия).
П. ф. применяются в системах автоматического управления и регулирования, в аналоговых и гибридных вычислительных машинах, в устройствах кодирования (декодирования), в телемеханических системах, измерительных устройствах и т.п.
Лит.: Основы автоматического управления, 3 изд., М., 1974.
Читать дальшеИнтервал:
Закладка: