Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Биметаллические автоматы защиты сети являются и защитными, и коммутационными аппаратами (выключателями). Их главным элементом является биметаллическая пластина из двух металлов, обладающих различным коэффициентом линейного расширения, по которой проходит ток защищаемой цепи. Как только сила тока недопустимо возрастает, пластина нагревается, оба металла расширяются по-разному, пластина изгибается и размыкает контакты цепи. Такие автоматы бывают типов АЗР, АЗС, АЗК-1 (кнопочные) и др. Цифра в обозначении автомата указывает ток в амперах, на который он рассчитан. Например, АЗС-5, АЗР-15. Из большой номенклатуры монтажно-установочного оборудования можно выделить как наиболее часто встречающиеся штепсельные разъемы – электрические соединители. Комплект разъема состоит из колодки и вставки. Электрическое соединение колодки и вставки осуществляется контактами типа штырь-гнездо, к хвостовой части которых припаиваются провода. Механическое соединение обеспечивается накидной гайкой, которая контрится во избежание самоотвинчивания. Типы разъемов: ШР, СШР, ШРГ и др. (Г – герметичный). Есть разъемы типа СНЦ, имеющие байонетное (штыковое) соединение (а не накидную гайку). Байонетное соединение осуществляется быстрее, чем резьбовое.
Для обеспечения необходимого качества электрической энергии совместно с ее источниками функционирует регулирующая аппаратура, которая стабилизирует параметры электрической энергии. Так, совместно с генераторами постоянного тока работают регуляторы напряжения, а с генераторами переменного тока – еще и регуляторы частоты (также входят в состав электромашинных преобразователей).
Рассмотрим принцип построения систем регулирования напряжения генераторов. Напряжение на выходе генератора постоянного тока обуславливается следующим: Е – ЭДС генератора, I я– ток якоря (нагрузки), R вн– внутреннее сопротивление генератора, k – коэффициент, определяемый внутренними параметрами генератора, w – частота вращения генератора. Ф м– магнитный поток возбуждения. Аналогичная зависимость присуща и выражению для напряжения авиационных генераторов переменного тока. Ток якоря (нагрузки) генератора и его частота вращения (если нет ППЧВ) при работе на ЛА изменяются в широких пределах: I Яможет изменяться от 0 до 1,5 I ном; w – в 2,5 раза. Поэтому напряжение генератора (если нет регулятора напряжения) также может изменяться в широких пределах: порядка в 4 раза.
Понятно, что большинство потребителей не может функционировать при таких изменениях напряжения. По ГОСТу должно быть U Г= U ном+ 2%. Из приведенного уравнения следует, что для регулирования напряжения необходимо воздействовать на магнитный поток возбуждения. Обычно это воздействие осуществляется посредством изменения тока в обмотке возбуждения генератора. Собственно регулятор напряжения состоит из чувствительного элемента, усилительного звена и исполнительного устройства. Объект регулирования – генератор и регулятор – охвачены жесткой обратной связью. Работа системы регулирования заключается в следующем. Текущее значение напряжения генератора U Гпостоянно подается в ЧЭ, где сравнивается с эталонным значением U этал.
Если разностный сигнал U = U Г– U эталотличен от нуля, то он усиливается и подается на ИУ, которое воздействует на генератор (на ток обмотки возбуждения генератора) таким образом, чтобы обнулить разностный сигнал U .
Элементной базой современных регуляторов напряжения являются полупроводниковые приборы: транзисторы, тиристоры и другие электродетали, системы пожарной сигнализации, пожаротушения, средства обнаружения предупреждения пожара. На самолетах установлена система ИС-5МГ, сигнализирующая о пожаре в двигательном отсеке летательного аппарата.
При возникновении пожара система ИС-5МГ срабатывает и подает визуальный (световой) и звуковой сигналы летчику о пожаре в отсеках: КСА, правого или левого силового агрегата. Одновременно сигнал о пожаре поступает в систему «ЭКРАН», «ТЕСТЕР». На приборной доске загораются лампы. Система срабатывает за 1 с. За это время огнегасящая смесь поступает в соответствующий отсек, в котором возник пожар (по сигналу от датчика). При исчезновении пламени система возвращается в первоначальное состояние за время не более 1 с. Чувствительным элементом системы является датчик ионизационного типа действия.
На вертолете МИ-24В установлена система сигнализации о пожаре ССП-ФК. Летчику выдается сигнал о возникновении пожара в следующих отсеках: отсек левого двигателя; отсек правого двигателя; отсек АИ-9, бак 3; отсек главного редуктора. Датчиком системы служит термобатарея ДТБГ, состоящая из термопар. При охвате датчика средой, температура которой не выше 150 °С и скорость непрерывного нарастания t которой более 2 °С в секунду, в термопарах возникает ЭДС, достаточная для срабатывания системы ССП.
Система пожаротушения имеет два четырехлитровых огнетушителя УБШ с огнегасящим наполнением (фреон 114 В). Они разбиты на две очереди срабатывания. В случае неликвидации очага пожара баллоном 1-й очереди летчик вручную переключателем использует огнегасящий состав баллона 2-й очереди. Контроль за ликвидацией пожара производится визуально, когда погаснут лампы сигнализации о пожаре.
Авиационный ракетный двигатель
Авиационный ракетный двигатель – двигатель прямой реакции, преобразующий какой-либо вид первичной энергии в кинетическую энергию рабочего тела и создающий реактивную тягу. Сила тяги приложена непосредственно к корпусу ракетного двигателя и без каких-либо промежуточных устройств обеспечивает перемещение двигателя и связанного с ним аппарата в сторону, противоположную направлению истечения реактивной струи. Так, в ракетном двигателе сочетаются собственно двигатель и движитель.
Основной частью любого ракетного двигателя служит камера сгорания, в которой генерируется рабочее тело, газообразное или жидкое вещество, благодаря которому происходит преобразование количественной первичной энергии (химической, электрической, ядерной) в механическую работу ракетного двигателя. Рабочим телом могут быть раскаленные газы (продукты сгорания химического топлива), вода, газы (водород, гелий, азот и т. п.), пары щелочных металлов и др. Конечная часть камеры сгорания предназначена для ускорения рабочего тела и получения реактивной струи, называемой реактивным соплом.
В зависимости от использования окружающей среды при работе ракетного двигателя они подразделяются на воздушно-реактивные двигатели (ВРД), ракетные двигатели (РД), комбинированные ракетные двигатели и гидрореактивные двигатели. Основными классами ракетных двигателей являются ВРД и РД. В ВРД рабочее тело образуется при реакции окисления горючего вещества, которое берется на борт аппарата, кислородом воздуха.
Читать дальшеИнтервал:
Закладка: