Коллектив авторов - Большая энциклопедия техники

Тут можно читать онлайн Коллектив авторов - Большая энциклопедия техники - бесплатно ознакомительный отрывок. Жанр: Энциклопедии, издательство Array Литагент «Научная книга». Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая энциклопедия техники
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Научная книга»
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Большая энциклопедия техники краткое содержание

Большая энциклопедия техники - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Энциклопедия техники» – необычная, познавательная и удобная в использовании книга. Издание содержит около 2000 всевозможных технических терминов, понятий и обозначений из различных областей науки, хозяйства и производства. Здесь можно найти все – от описания миксера и другой бытовой техники до статей о тяжелой артиллерии, грейдера, ядерного реактора и медицинского аппарата УЗИ. Книга будет представлять интерес не только для специалистов в данных областях, техников и инженеров, но и для каждого любознательного и разносторонне развитого человека.

Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок

Большая энциклопедия техники - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Космическое телевидение, созданное так недавно, уже имеет собственные вехи исторического развития. В 1961 г. с его помощью произвели первую съемку космонавта в открытом космосе. Через пять лет высокоорбитальным аппаратам удалось передать изображение полного диска Земли, которое сегодня можно встретить в каждом учебнике по географии и другим подобным предметам.

Космическое телевидение было использовано также в 1962 г. На корабль «Восток-3», который находился под управлением А. Николаева, установили телевизионную камеру. Передачу информации могли наблюдать только специалисты из Центра управления полетами. А уже через семь лет вся планета смогла наблюдать первый выход человека на Луну.

В 1975 г. советская система космического цветного телевидения передала на Землю репортаж с совместного полета космических кораблей «Аполлон» и «Союз». Кроме всего прочего, космическое телевидение активно применятся в телевизионных системах, используемых в беспилотных космических полетах: телевизионные системы обнаружения ракет с большой высоты и метеорологическая система. Интересно, что именно космические телевизионные системы обнаружения ракет с высоких орбит, благодаря малочастотности кадров, стали первыми цифровыми телесистемами.

В 1959—1983 гг. непрерывно разрабатывались новые и совершенствовались старые фототелевизионные устройства: «Марс-1», «Зонд-3», «Океан-О», «Венера-13» и др. Чтобы съемка проходила удачно, применялись устройства для проведения химико-фотографических процессов в бортовых условиях, защиты фотопленки от космической радиации и т. д.

Сигналы изображения формировались специальными оптико-механическими устройствами (камерами), проводящими топографические съемки Луны и других космических объектов. Оптико-механические устройства входили в состав комбинированной телевизионной системы, управляющей луноходами. Кроме таких устройств, телевизионную систему составляла электронная система МКТВ, управляющая двигающимся луноходом.

Со временем космическое телевидение совершенствовалось, вырабатывались новые технологии, создавались необходимые приборы. Одним из таких нововведений была панорамная телевизионная камера. Она работала в обычных и экстремальных ситуациях на поверхности Венеры. Полученные цветные панорамы планеты Венера пополнили неоценимую сокровищницу космических успехов и достижений.

Сравнительно недавно в космических научных кругах стали применять оптико-электронные устройства. В них соединяются наклонное зондирование и сканирование, за счет которых ученым и космонавтам стало возможным проводить мониторинг суши и водных поверхностей.

Уже более 10 лет прошло со дня запуска японского научного космического аппарата Solar-A (Yohkoh). Этот аппарат сделал около 6 млн снимков Солнца, которые показывают нагрев солнечной короны, развитие вспышек на Солнце и роль магнитного поля в возникновении солнечных вспышек. На основе этих космических съемок было проведено около 600 научных конференций и 100 защит диссертаций.

В последнее время на пике популярности находятся так называемые космические туристические полеты.

Для развития космонавтики это дополнительный экономический ресурс, причем немалый в своем объеме, для космических туристов – незабываемое и ни с чем не сравнимое приключение. И, конечно же, не последнее место в организации и проведении подобных полетов занимает космическое телевидение.

Лампа бегущей волны

Лампа бегущей волны – это электровакуумный прибор, с помощью которого усиливаются электромагнитные колебания СВЧ. Бегущая электромагнитная волна, взаимодействуя и двигаясь в одном направлении с электронным потоком, приводит к усилению колебаний СВЧ. Лампа бегущей волны используется как в приемных, так и в передающих устройствах. Лампа предназначена для умножения частоты колебаний, их преобразования и т. д.

Впервые электровакуумный прибор, который можно назвать предком лампы бегущей волны, запатентовал в 1936 г. американский ученый А. Гаев. Собственно лампа бегущей волны появилась спустя семь лет, в 1943 г., когда она была предложена другим американским инженером – Р. Компфнером. После этого лампами начали заниматься многие исследователи, такие как Дж. Пирс, в 1947 г. первым опубликовавший свой теоретический труд, посвященный лампе бегущей волны.

Лампа бегущей волны состоит из электронной пушки; замедляющей системы; коллектора для улавливания электронов; фокусирующей системы; ввода и вывода энергии электромагнитных колебаний, а также поглотителя энергии электромагнитных колебаний. Электронная пушка создает и формирует электронный поток. Замедляющая система необходима для снижения скорости бегущей волны и для синхронизации движений волны и электронного потока. Фокусирующая система представляет собой периодическую систему, создающую магнитное поле, которое удерживает электронный поток в определенных границах поперечного сечения. Поглотитель энергии электромагнитных колебаний устраняет самовозбуждение лампы бегущей волны за счет отражения волн от замедляющей системы.

Лампы бегущей волны имеют широкие полосы пропускания, в некоторых типах ламп длина полос превышает октаву. Мощность ламп изменяется от нескольких долей МВт в маломощных и малошумящих лампах усилителей СВЧ, до десятков кВт в передающих устройствах СВЧ. Усиление ламп бегущей волны довольно большое: 30—60 дБ.

Лампы бегущей волны различаются по классам. Существуют лампы бегущей волны класса О и класса М, каждая имеет свои отличительные особенности.

В приборе типа М требуемое взаимодействие электронов с бегущей волной проводится при точных определениях скоростей электронов и фазовой волны. В приборах типа О необходимым условием является ускорение электронов. В лампах этого класса кинетическую энергию, являющуюся избытком, электроны передают полю при заметном различии скоростей волны и электронов.

В лампах класса М поле забирает потенциальную энергию, в то время как кинетическая энергия электронов не подлежит изменению. Лампы двух описанных типов являются широкополосными усилителями. Самовозбуждение вызывается отражением от замедляющей системы усиливаемого сигнала, а предотвращается при помощи поглотителя.

В лампах бегущей волны класса О кинетическая энергия электронов преобразовывается в СВЧ-энергию. Это происходит за счет СВЧ-поля, которое тормозит электроны. Магнитное поле фокусирует электронный пучок, располагается в одном направлении с ним. Лампы бегущей волны класса О различаются в зависимости от своей мощности. Во входных усилителях используются лампы с малой мощностью, в промежуточных усилителях – со средней, в выходных усилителях – с большой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая энциклопедия техники отзывы


Отзывы читателей о книге Большая энциклопедия техники, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x