Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В лампах бегущей волны класса М потенциальная энергия электронов генерируется в энергию СВЧ-поля. Электроны постоянно тормозят и разгоняются при движении от анода к катоду и в результате смешиваются. Магнитное поле перпендикулярно к направлению пучка. Лампа бегущей волны типа М состоит из инжектирующего устройства, создающего ленточный электронный поток, и пространства взаимодействия, которое генерирует электроны с СВЧ-полем.
Лампы бегущей волны действуют за счет взаимодействия поля бегущей электромагнитной волны с электронным потоком. Фокусирующий соленоид находится на металлическом баллоне, тогда как электронная пушка, замедляющая система в виде спирали и коллектор располагаются в самом баллоне. Спираль закрепляется между стержнями-диэлектриками с хорошей проводимостью тепла.
Лампа-вспышка
Лампа-вспышка – устройство вспомогательное, соединенное синхроконтактом с фотоаппаратом, осуществляет фотовспышку – интенсивное освещение объекта на краткое время его съемки. Представляет собой портативный импульсный источник света, автоматически включающийся во время полного раскрытия затвора фотоаппарата.
Существуют лампы-вспышки одноразового и многократного действия.
Лампы-вспышки многократного действия называются электронными. Конструкция электронной лампы-вспышки состоит из импульсной газосветной лампы с рефлектором, блока электрического питания, кронштейна-держателя и присоединительных электрических кабелей. Электрическое питание лампы-вспышки осуществляется или от сети 127—220 В при помощи выпрямителя переменного тока, или от электрической батареи. Фотовспышка осуществляется следующим образом: при включении устройства через резисторы заряжаются конденсаторы, причем конденсатор с малой емкостью заряжается быстрее конденсатора с большой емкостью, и после его полной зарядки, включения резистора, ограничивающего силу тока, включается неоновая сигнальная лампа, дающая сигнал, что устройство готово к работе. Когда затвор раскрывается полностью, происходит замыкание синхроконтакта, и через первичную обмотку трансформатора разряжается конденсатор с малой емкостью, это создает в его вторичной обмотке импульс 10—15 кВ, который ионизирует газ в импульсной лампе, и через ставший токопроводящим промежуток между ее контактами разряжается конденсатор с большой емкостью. Это и вызывает мощную вспышку света (фотовспышку). Когда после этого в импульсной лампе газ становится нетокопроводящим, конденсатор с большей мощностью начинает опять заряжаться, его зарядка длится до 15 с, после чего лампа-вспышка может быть снова использована. Лампы-вспышки многократного действия могут дать до 10 000 вспышек, продолжительность их вспышки составляет 1/400—1/2000 с, энергия их вспышки 36—100 Дж. Лампы-вспышки многократного действия имеют очень широкое применение.
Но существуют также и лампы-вспышки одноразового действия. Это небольшие лампы с баллоном, наполненным металлической фольгой и кислородом, их действие основано на сгорании фольги в атмосфере кислорода, что дает световой импульс 1/25 с.
Лампа обратной волны
Лампа обратной волны – это электровакуумный прибор, с помощью которого генерируются электромагнитные колебания СВЧ. Для процесса генерирования электромагнитная волна взаимодействует с электронным потоком. Электромагнитная волна по замедляющей системе движется в прямо противоположном электронам направлении. В зарубежной специальной литературе встречается и другое название прибора, такое, как карцинотрон.
Лампы обратной волны используются в сигнал-генераторах и свип-генераторах с широким диапазоном для радиотехнических измерений, также в быстро перестраиваемых приемниках, задающих генераторах с быстро перестраивающейся частотой и т. д.
Американский ученый-физик С. Мильман в 1950 г. обнаружил генерирование колебаний СВЧ, связанных с электронным потоком и обратной волной. Американцы Р. Компфнер и Н. Уильямс в 1953 г. ввели термин «лампа обратной волны» в научный дискурс.
Электронная пушка лампы обратной волны создает поток электронов, которые двигаются по прямой линии. Встречные пластины образовывают замедляющую систему, через которую проходит поток электронов. За счет этого в замедляющей системе возбуждается электромагнитная волна, направление которой прямо противоположно направлению движения электронов. Электрическое поле бегущей волны влияет на электронный поток, в результате чего формируются сгустки электронов. Сгустки тормозятся электрическим полем. Чтобы электронный поток сфокусировать, используют электростатическую систему фокусировки или направленное по оси потока магнитное поле.
Лампы обратной волны различаются по мощности колебаний, которая варьируется от 5 до 100 МВт.
Различают два вида ламп обратной волны – лампа типа О и лампа типа М.
В лампе обратной волны типа О СВЧ-поле тормозит электроны, в результате чего кинетическая энергия электронов преобразуется в энергию СВЧ-поля.
Лампы другого типа преобразуют потенциальную энергию в СВЧ-поле. Электроны при движении от катода к аноду тормозят и разгоняются, смешиваются между собой. От напряжения замедляющейся системы зависит непосредственно частота излучения в лампах обоих типов.
Генераторы, применяемые на лампах обратной волны типа М, могут обеспечивать выходную мощность в разных частотных диапазонах. В дециметровом диапазоне мощность может равняться десятку кВт, в сантиметровом – нескольким единицам кВт. Подобные генераторы по своей мощности занимают первое место среди генераторов СВЧ-колебаний с электронной перестройкой частоты. В настоящее время они являются самыми мощными генераторами СВЧ-колебаний с электронной перестройкой частоты. Если генераторы синхронизированы, то их характеристиками являются высокая стабильность частоты и низкий уровень шума, что помогает для использования их в различных областях.
Волна СВЧ при изменении частоты лампы обратной волны отражается и поступает в замедляющую систему. Изменение выходной мощности изменяется, если отраженная таким образом волна взаимодействует с электронным потоком. Для того чтобы не изменять мощность, включается поглотитель, находящийся на конце замедляющей системы. При изменении напряжения катода и замедляющей системы изменяется и частота колебаний в лампе обратной волны. В современных лампах обратной волны диапазон частот колебаний изменяется от единиц ГГц до единиц ТГц. При уменьшении напряжения увеличивается крутизна электронной перестройки ламповой частоты. Величина напряжения пропорциональна выходной мощности колебаний лампы, которая изменяется от милливатт до нескольких ватт. Мощность лампы обратной волны зависит от напряжения замедляющейся системы.
Читать дальшеИнтервал:
Закладка: