БСЭ БСЭ - Большая Советская Энциклопедия (ВА)
- Название:Большая Советская Энциклопедия (ВА)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ВА) краткое содержание
Большая Советская Энциклопедия (ВА) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В перечислении основных разделов современного В. и. нельзя не указать на глобальные задачи В. и., решение которых требует качественных методов. Искомое решение вариационной задачи удовлетворяет некоторому сложному нелинейному уравнению и краевым условиям. Естественно поставить вопрос о том, сколько решений допускает эта задача. Примером такой задачи является вопрос о количестве геодезических, которые можно провести между двумя точками на заданной поверхности. Проблема подобного рода относится уже к компетенции качественной теории дифференциальных уравнений и топологии. Последнее обстоятельство очень характерно. Методы, специфические для смежных дисциплин, топологии, функционального анализа и т.д., всё шире начинают применяться в В. и. В свою очередь, идеи В. и. проникают во всё новые области математики, и грань между В. и. и смежными областями математики теперь провести уже трудно.
Лит.: Лаврентьев М. А., Люстерник Л. А., Курс вариационного исчисления, 2 изд., М. — Л., 1950; Блисе Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950; Михлин С. Г., Вариационные методы в математической физике, М., 1957; Смирнов В. И., Курс высшей математики, 5 изд., т. 4, М., 1958; Гельфанд И. М., Фомин С. В., Вариационное исчисление, М., 1961; Математическая теория оптимальных процессов, М., 1969.
Н. Н. Моисеев.
Вариационные принципы механики
Вариацио'нные при'нципы меха'ники.Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.
Невариационные принципы механики непосредственно устанавливают закономерности движения, совершаемого системой под действием приложенных к ней сил. К этим принципам относятся, например, 2-й закон Ньютона, согласно которому при движении любой точки системы произведение её массы на ускорение равно сумме всех приложенных к точке сил, а также Д'Аламбера принцип . Невариационные принципы справедливы для любой механической системы и имеют сравнительно простое математическое выражение. Однако их применение ограничено только рамками механики, поскольку в выражения принципов непосредственно входит такое чисто механическое понятие, как сила. Существенно также следующее. В большинстве задач механики рассматривается движение несвободных систем, то есть систем, перемещения которых ограничены связями (см. Связи механические ) . Примерами таких систем являются всевозможные машины и механизмы, а также наземный транспорт и др., где связями являются подшипники, шарниры, тросы и т.п., а для наземного транспорта — ещё и полотно дороги или рельсы. Чтобы изучить движение несвободной системы, исходя из невариационных принципов, надо и эффект действия связей заменить некоторыми силами, называемыми реакциями связей. Но величины этих реакций заранее неизвестны, поскольку они зависят от того, чему равны и где приложены действующие на систему заданные (активные) силы, такие, например, как силы тяжести, упругости пружин, тяги и др., а также от того, как при этом движется сама система. Поэтому в составленные уравнения движения войдут дополнительные неизвестные величины в виде реакций связей, что обычно существенно усложняет весь процесс решения.
Преимущество В. п. м. состоит в том, что из них сразу получаются уравнения движения соответствующей механической системы, не содержащие неизвестных реакций связей. Достигается это тем, что эффект действия связей учитывается не заменой их неизвестными силами (реакциями), а рассмотрением тех перемещений или движений (или же приращений скоростей и ускорений), которые точки этой системы могут иметь при наличии данных связей. Например, если точка М движется по данной гладкой (идеальной) поверхности, являющейся для неё связью ( рис. 1 ), то действие этой связи можно учесть, заменив связь заранее неизвестной по величине реакцией N, направленной в любой момент времени по нормали Mn к поверхности (поскольку по этому направлению связь не даёт перемещаться точке). Но эффект этой же связи можно учесть, установив, что для точки в данном случае при любом её положении возможны лишь такие элементарные перемещения, которые перпендикулярны к нормали Mn ( рис. 2 ); такие перемещения называются возможными перемещениями. Наконец, эффект той же связи может быть охарактеризован и тем, что при этом движение точки из некоторого положения А в положение В возможно только по любой кривой АВ, лежащей на поверхности, которая является связью ( рис. 3 ); такие движения называются кинематически возможными.
Содержание В. п. м. состоит в том, что они устанавливают свойства (признаки), позволяющие отличить истинное, то есть фактически происходящее под действием заданных сил движение механической системы, от тех или иных кинематически возможных её движений (или же состояние равновесия системы от других возможных ее состояний). Обычно эти свойства (признаки) состоят в том, что для истинного движения некоторая физическая величина, зависящая от характеристик системы, имеет наименьшее значение по сравнению с её значениями во всех рассматриваемых кинематически возможных движениях. При этом В. п. м. могут отличаться друг от друга видом указанной физической величины и особенностями рассматриваемых кинематически возможных движений, а также особенностями самих механических систем, для которых эти В. п. м. справедливы. Использование В. п. м. требует применения методов вариационного исчисления.
По форме В. п. м. разделяют на так называемые дифференциальные, в которых устанавливается, чем истинное движение системы отличается от движений кинематически возможных в каждый данный момент времени, и интегральные, в которых это различие устанавливается для перемещений, совершаемых системой за какой-нибудь конечный промежуток времени.
Дифференциальные В. п. м. в рамках механики являются более общими и практически справедливы для любых механических систем. Интегральные В. п. м. в их наиболее употребительном виде справедливы только для так называемых консервативных систем, то есть систем, в которых имеет место закон сохранения механической энергии. Однако в них, в отличие от дифференциальных В. п. м. и невариационных принципов, вместо сил входит такая физическая величина, как энергия, что позволяет распространить эти В. п. м. на немеханические явления, делая их важными для всей теоретической физики.
Читать дальшеИнтервал:
Закладка: