БСЭ БСЭ - Большая Советская Энциклопедия (КИ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (КИ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (КИ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (КИ) краткое содержание

Большая Советская Энциклопедия (КИ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (КИ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (КИ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе — относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу — абсолютными; скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.

Основные задачи К. сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, т. е.

n a= n oтн+ n пер,

а абсолютное ускорение точки равно геометрической сумме трёх ускорений — относительного, переносного и поворотного, или кориолисова (см. Кориолиса ускорение ) , т. е.

w a= w oтн+w пер+w kop.

Для твердого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений (см. Винтовое движение ) .

В К. непрерывной среды устанавливаются способы задания движения этой среды, рассматривается общая теория деформаций и определяются так называемые уравнения неразрывности, отражающие условия непрерывности среды.

Лит. см. при ст. Механика.

С. М. Тарг.

Рис 1 к ст Кинематика Рис 4 к ст Кинематика Рис 2 к ст Кинематика - фото 95

Рис. 1 к ст. Кинематика.

Рис 4 к ст Кинематика Рис 2 к ст Кинематика Рис 3 к ст Кинематика - фото 96

Рис. 4 к ст. Кинематика.

Рис 2 к ст Кинематика Рис 3 к ст Кинематика Кинематика звёздных систем - фото 97

Рис. 2 к ст. Кинематика.

Рис 3 к ст Кинематика Кинематика звёздных систем Кинематика звёздных - фото 98

Рис. 3 к ст. Кинематика.

Кинематика звёздных систем

Кинема'тика звёздных систе'м,раздел звёздной астрономии; то же, что звёздная кинематика.

Кинематика механизмов

Кинема'тика механи'змов,раздел теории машин и механизмов, в котором изучают геометрическую сторону движения частей (звеньев) механизма, пренебрегая вызывающими его причинами. Исследования К. м. основываются на положении о том, что любой механизм состоит из подвижно соединённых твёрдых тел — звеньев, движения которых определяются движением одного или нескольких звеньев, называемых ведущими.

К. м. решает задачи кинематического анализа и кинематического синтеза (см. Синтез механизмов ) . Основные задачи кинематического анализа: определение положений звеньев, траекторий отдельных точек механизма, угловых скоростей и ускорений звеньев, линейных скоростей и ускорений отдельных точек механизма. Для решения каждой из этих задач должны быть заданы постоянные геометрические параметры механизма, определяющие его кинематические свойства и законы движения ведущих звеньев. Например, для плоского шарнирного механизма ( рис. 1 ) должны быть известны расстояния между центрами шарниров и закон движения ведущего звена АВ. Для кулачкового механизма ( рис. 2 ) должны быть заданы профиль кулачка 1 и закон его движения, радиус ролика 3, расстояния между центрами шарниров С и D, А и D. Положения звеньев определяют графическими и аналитическими методами.

Более простые графические методы заключаются в следующем. Если для механизма ( рис. 1 ) известно положение звена АВ и расстояния между центрами шарниров, можно положения всех остальных звеньев определить засечками циркуля. Таким образом, задача для плоских механизмов всегда может быть сведена к определению точек пересечения плоских кривых. Графические построения для пространственных механизмов усложняются, т.к. они связаны с определением линий и точек пересечения пространственных фигур. Однако в пределах точности графических построений всегда можно построить положения всех звеньев плоских и пространственных механизмов любой сложности.

Аналитические методы позволяют определять положения звеньев с заранее заданной точностью. Задача сводится к решению системы нелинейных уравнений. Для типовых механизмов разработаны программы вычислений на ЭВМ.

Траектории отдельных точек механизма определяют обычно совместно с определением положений звеньев, причём выполняется графическое построение или аналитическое исследование только тех траекторий, от вида которых зависит движение рабочих органов механизма. Траектории, описываемые точками механизма, весьма разнообразны и в некоторых случаях представляют собой сложные плоские или пространственные кривые. Например, траектория, описываемая точкой М ( рис. 1 ), является алгебраической кривой 6-го порядка. Траектории точек, лежащих на звене ME, представляют уже кривые 14-го порядка.

Определение скоростей звеньев и отдельных точек механизмов — наиболее разработанный раздел К. м., располагающий графическими методами кинематических диаграмм и планов скоростей и аналитическим методом. Для определения скоростей какой-либо точки строят диаграмму изменения пути этой точки по времени, используя данные, полученные при определении положений звеньев, а затем, применяя графическое дифференцирование, строят диаграмму изменения скорости по времени (см. Графические вычисления ). Это метод наиболее простой, однако характеризуется небольшой точностью. Метод планов скоростей применим для плоских и пространственных механизмов. При построении планов скоростей используют соотношения между векторами скоростей различных точек механизма. Точность метода планов скоростей, как и всякого графического метода, ограничена, поэтому при исследовании механизмов, для которых требуется повышенная точность кинематического расчёта, предпочтительно применение аналитических методов, которые всегда можно свести к системе линейных уравнений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (КИ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (КИ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x