БСЭ БСЭ - Большая Советская Энциклопедия (ТЕ)
- Название:Большая Советская Энциклопедия (ТЕ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ТЕ) краткое содержание
Большая Советская Энциклопедия (ТЕ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для измерения максимальной температуры за некоторый промежуток времени применяется ртутный максимальный Т. м. Цена деления его шкалы 0,5 °С; пределы измерения от -35 до 50 °С (или от -20 до 70 °С), рабочее положение почти горизонтальное (резервуар слегка опущен). Показания максимальных значений температуры сохраняются благодаря наличию в резервуаре 1 ( рис. 1 ) штифта 2 и вакуума в капилляре 3 над ртутью. При повышении температуры избыток ртути из резервуара вытесняется в капилляр через узкое кольцеобразное отверстие между штифтом и стенками капилляра и остается там и при понижении температуры (так как в капилляре вакуум). Таким образом, положение конца столбика ртути относительно шкалы соответствует значению максимальной температуры. Приведение показаний термометра в соответствие с температурой в данный момент производят его встряхиванием. Для измерения минимальной температуры за некоторый промежуток времени используются спиртовые минимальные Т. м. Цена деления шкалы 0,5 °С; нижний предел измерений варьирует от -75 до -41 °С, верхний от 21 до 41 °С. Рабочее положение Т. — горизонтальное. Сохранение минимальных значений обеспечивается находящимся в капилляре 1 ( рис. 2 ) внутри спирта штифтом — указателем 2. Утолщения штифта меньше внутреннего диаметра капилляра; поэтому при повышении температуры спирт, поступающий из резервуара в капилляр, обтекает штифт, не смещая его. При понижении температуры штифт после соприкосновения с мениском столбика спирта перемещается вместе с ним к резервуару (так как силы поверхностного натяжения плёнки спирта больше сил трения) и остаётся в ближайшем к резервуару положении. Положение конца штифта, ближайшего к мениску спирта, указывает минимальную температуру, а мениск — температуру в настоящий момент. До установки в рабочее положение минимальный Т. м. приподнимают резервуаром кверху и держат, пока штифт не опустится до мениска спирта.
Для определения температуры поверхности почвы пользуются ртутным Т. м. Деления его шкалы 0,5 °С; пределы измерения варьируются: нижний от -35 до -10 °С, верхний от 60 до 85 °С. Измерения температуры почвы на глубинах 5, 10, 15 и 20 см производят ртутным коленчатым Т. м. (Савинова). Цена деления его шкалы 0,5 °С; пределы измерения от -10 до 50 °С. Вблизи резервуара термометр изогнут под углом 135°, а капилляр от резервуара до начала шкалы теплоизолирован, что уменьшает влияние на показания Т. слоя почвы, лежащего над его резервуаром. Измерения температуры почвы на глубинах до нескольких м осуществляются ртутными почвенно-глубинными Т. м., помещенными в специальных установках. Цена деления его шкалы 0,2 °С; пределы измерения варьируют: нижний -20, -10°С, а верхний 30, 40 °С. Менее распространены ртутно-талиевые психрометрические Т. м. с пределами от -50 до 35 °С и некоторые др.
Кроме Т. м., в метеорологии применяются термометры сопротивления, термоэлектрические, транзисторные, биметаллические, радиационные и др. Термометры сопротивления широко используются в дистанционных и автоматических метеорологических станциях (металлические резисторы — медные или платиновые) и в радиозондах (полупроводниковые резисторы); термоэлектрические применяются для измерения градиентов температуры; транзисторные термометры (термотранзисторы) — в агрометеорологии, для измерения температуры пахотного слоя почвы; биметаллические термометры (термопреобразователи) применяются в термографах для регистрации температуры, радиационные термометры — в наземных, самолётных и спутниковых установках для измерения температуры различных участков поверхности Земли и облачных образований.
Лит.: Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968.
М. С. Стернзат.

Рис. 1. Устройство максимального термометра.

Рис. 2. Устройство минимального термометра.
Термомеханическая обработка
Термомехани'ческая обрабо'ткаметаллов (ТМО), совокупность операций деформации, нагрева и охлаждения (в различной последовательности), в результате которой формирование окончательной структуры металла, а следовательно, и его свойств происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластической деформацией. Т. о., особенностью этого способа изменения свойств металлических сплавов является сочетание операций обработки металлов давлением и термической обработки.
Возможность применения ТМО определяется тем, что на процессы структурных превращений существ влияние оказывают присутствующие в реальных сплавах несовершенства строения ( дислокации, дефекты упаковки, вакансии ) . С другой стороны, в результате некоторых структурных изменений образуются новые несовершенства, а также происходит перераспределение имеющихся несовершенств. Отсюда механизм и кинетика структурных изменений при ТМО зависят от характера и плотности несовершенств строения и, в свою очередь, влияют на их количество и распределение.
Для классификации технологических схем ТМО целесообразно выбрать в качестве классификационного признака последовательность проведения пластического деформирования и термической обработки ( рис. ).
Совмещение пластической деформации с фазовыми превращениями получило впервые практическую реализацию в начале 20 в. при осуществлении патентирования в процессе производства стальной проволоки. Использование по своеобразной технологической схеме комбинированного воздействия пластической деформации и термической обработки привело к получению таких высоких механических свойств, которые были недостижимы при всех др. способах упрочняющей обработки. В 30-е гг. 20 в. применялась другая схема ТМО при упрочнении бериллиевой бронзы: закалка, холодная деформация, старение; такая обработка также обеспечила существенное повышение механических свойств сплава.
Развитие ТМО и создание её основных положений оказались возможными лишь на базе теории дислокаций, в частности тех её разделов, в которых устанавливается связь между несовершенствами строения и процессами структурообразования при превращениях. Исторически первой опробованной схемой термомеханического упрочнения машиностроительной стали (1954, США) была низкотемпературная термомеханическая обработка (НТМО). Смысл переохлаждения аустенита в схеме НТМО заключается в том, чтобы вести деформацию ниже температуры его рекристаллизации. Этим НТМО отличается от разработанной несколько позднее в СССР высокотемпературной термомеханической обработки (ВТМО), которая в дальнейшем получила большее распространение в связи с необходимостью повышения механических свойств массовых сортов стали, применяемых в современном машиностроении.
Читать дальшеИнтервал:
Закладка: