БСЭ БСЭ - Большая Советская Энциклопедия (ФО)
- Название:Большая Советская Энциклопедия (ФО)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ФО) краткое содержание
Большая Советская Энциклопедия (ФО) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
См. также Фотобиология.
Лит.: Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967, гл. 12; Физиология сенсорных систем, ч. 1, Л., 1971, с. 88–119 (Руководство по физиологии); Handbook of sensory physiology, v. 7/1–v. 7/2, В., 1972.
М. А. Островский.
Фоторождение частиц
Фоторожде'ние части'ц,процесс образования мезонов и других частиц на ядрах и нуклонах (протонах и нейтронах) под действием фотонов высокой энергии.
Фоторужьё
Фоторужьё, фотографический аппарат, оснащенный длиннофокусным объективом (телеобъективом) и укрепленный вместе с ним на держателе, который выполнен в виде ружейной ложи ( рис. ). Держатель позволяет жестко фиксировать положение фотоаппарата во время съёмки; на нём также имеются устройства для спуска фотозатвора (курок) и фокусировки объектива. Ф. предназначено для съёмки удалённых объектов и объектов, к которым нельзя подойти на близкое расстояние (например, для съёмки диких животных и птиц при фотоохоте).

Илл. к ст. Фоторужьё.
Фотосинтез
Фотоси'нтез(от фото... и синтез ) , образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности как самих растений, так и всех др. организмов, из простых соединений (например, углекислого газа и воды) за счёт энергии света, поглощаемой хлорофиллом и др. фотосинтетическими пигментами. Один из важнейших биологических процессов, постоянно и в огромных масштабах совершающийся на нашей планете. В результате Ф. растительность земного шара ежегодно образует более 100 млрд. т органического веществ (около половины этого количества приходится на долю Ф. растений морей и океанов), усваивая при этом около 200 млрд. т CO 2и выделяя во внешнюю среду около 145 млрд. т свободного кислорода. Полагают, что благодаря Ф. образуется весь кислород атмосферы. Ф. – единственный биологический процесс, который идёт с увеличением свободной энергии системы; все остальные (за исключением хемосинтеза ) осуществляются за счёт потенциальной энергии, запасаемой в продуктах Ф. Количество энергии, ежегодно связываемой фотосинтезирующими организмами океана и суши (около 3×10 21 дж ) , во много раз больше той энергии, которая используется человечеством (около 3×10 20 дж ) .
Историческая справка.Начало исследованию Ф. положено работами Дж. Пристли, Ж. Сенебье, Н. Соссюра, Я. Ингенхауза, Ю. Майера, в которых постепенно выяснилось, что растения на свету усваивают из воздуха углекислый газ, выделяют кислород, образуют в результате этого органические вещества, запасая в них энергию солнечного света. Во 2-й половине 19 в. К. А. Тимирязев показал, что энергия солнечного света вводится в цепь фотосинтетических превращений через зелёный пигмент растений – хлорофилл: спектр действия Ф. соответствует спектру поглощения света хлорофиллом, и интенсивность Ф. увеличивается с увеличением интенсивности света. В 1905 английским учёный Ф. Блекман обнаружил, что Ф. состоит из быстрой световой реакции и более медленной – темновой. Биохимическое доказательство существования световой и темновой фаз были получены лишь в 1937 английским исследователем Р. Хиллом. Крупный вклад в изучение темновой и световой стадий Ф. внесли также нем. биохимик и физиолог О. Варбург, амер. биохимик Х. Гафрон. В 1931 амер. микробиолог К. Нил показал, что фототрофные бактерии осуществляют Ф. без выделения О 2, т.к. при ассимиляции СО 2окисляют сероводород, тиосульфат и др. субстраты. Так было положено начало представлению о Ф. как окислительно-восстановительном процессе, где восстановление CO 2осуществляется при одновременном окислении донора водорода. В 1941 сов. учёными А. П. Виноградовым и М. В. Тейц, а также американскими исследователями Э. Рубеном и др. установлено, что источником кислорода, выделяющегося в процессе Ф. высших растений и водорослей, является вода, а не CO 2, как считали ранее.
Начиная с 1-й четверти 20 в. важные работы выполнены по изучению физиологии и экологии Ф. (В. В. Сапожников, С. П. Костычев, В. Н. Любименко, А. А. Ничипорович, О. В. Заленский и многие др.). С середины 20 в. изучению Ф. способствовало создание новых методов исследования (газовый анализ, изотопные методы, спектроскопия, электронная микроскопия и др.). Эти методы позволили разработать представления о тонких механизмах участия хлорофилла в Ф. (А. Н. Теренин, А. А. Красновский, американские учёные Е. Рабинович, В. Кок, У. Арнолд, Р. Клейтон, Дж. Франк, франц. исследователь Дж. Лаворель); об окислительно-восстановительных реакциях Ф. и о существовании двух фотохимических реакций Ф. (английский фитофизиолог Р. Хилл, С. Очоа, амер. исследователи В. Вишняк, Р. Эмерсон, Френч, голландский учёный Л. Дёйсенс); о фотосинтетическом фосфорилировании (Д. Арнон ) ; о путях превращения углерода (М. Калвин, амер. учёные Дж. Бассам, Э. Бенсон, австралийские исследователи М. Хетч и К. Слэк); о механизме разложения воды (В. Кок, французские учёные А. и П. Жолио, советский учёный В. М. Кутюрин и др.).
Характерные черты фотосинтеза высших зелёных растений, водорослей и фотосинтезирующих бактерий.В реакциях Ф. у высших зелёных растений, водорослей (многоклеточных – зелёных, бурых, красных, а также одноклеточных – эвгленовых, динофлагеллят, диатомовых) донором водорода и источником выделяемого кислорода служит вода, а основным акцептором атомов водорода и источником углерода – углекислый газ. При использовании в Ф. только CO 2и H 2O образуются углеводы. Но в процессе Ф. растения образуют не только углеводы, но и содержащие азот и серу аминокислоты, белки, а также пигменты и др. соединения. Акцепторами атомов водорода (наряду с CO 2) и источниками азота и серы в этом случае служат нитраты ( ) и сульфаты (
). Фотосинтезирующие бактерии не выделяют и не используют молекулярный кислород (большинство из них облигатные, т. е. обязательные анаэробы ) . Вместо воды в качестве доноров электронов эти бактерии используют либо неорганические соединения (сероводород, тиосульфат, газообразный водород), либо органические вещества (молочную кислоту, изопропиловый спирт). Источником углерода в большинстве случаев является также CO 2, но наряду с этим и некоторые органические соединения (например, ацетат). Т. о., Ф. у разных организмов может протекать с использованием различных доноров (ДН 2), акцепторов (А) электронов и водорода и может быть представлен схематически обобщённым уравнением:
Интервал:
Закладка: