БСЭ БСЭ - Большая Советская Энциклопедия (ХА)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ХА) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ХА)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.89/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ХА) краткое содержание

Большая Советская Энциклопедия (ХА) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ХА) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ХА) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Х. дифференциального уравнения 2-го порядка

Большая Советская Энциклопедия ХА - изображение 108 (3)

были введены Г. Монжем (1784, 1795) как линии, вдоль которых удовлетворяется обыкновенное дифференциальное уравнение

Большая Советская Энциклопедия ХА - изображение 109. (4)

Если уравнение (3) принадлежит к гиперболическому типу, то получаются два семейства Х. с уравнениями x( x , y ) = C 1 и h( х , у ) = C 2 ( C 1, C 2— произвольные постоянные); взяв x и h за новые аргументы, можно привести уравнение (3) к виду

Для уравнения 3 параболического типа эти семейства совпадают если выбрать - фото 110.

Для уравнения (3) параболического типа эти семейства совпадают; если выбрать аргумент h произвольно, то уравнение (3) приведется к виду

Уравнение 3 эллиптического типа не имеет вещественных Х если записать - фото 111.

Уравнение (3) эллиптического типа не имеет вещественных Х.; если записать решение уравнения (4) в виде x ± i h = C , то уравнение (3) преобразуется к виду

Значения решения и вдоль Х и значения и в какойлибо её точке полностью - фото 112.

Значения решения и вдоль Х. и значения картинка 113 и картинка 114 в какой-либо её точке полностью определяют значения этих производных вдоль всей линии [на этом основан т. н. метод Х. решения краевых задач для уравнения (3)]; для других линий такой связи нет. С другой стороны, значения u , картинка 115 и картинка 116, заданные на линии, не являющейся Х., определяют значения решения вблизи этой линии; для Х. же это не так. Если два решения уравнения (3) совпадают по одну сторону от некоторой линии и различны по другую, то эта линия непременно является Х.

Если коэффициенты уравнения (3) зависят от u , картинка 117 и картинка 118 (квазилинейный случай), то Х., определяемые из уравнения (4), будут разные для разных решений. Имеются определения Х. и для уравнений и систем уравнений с частными производными любого порядка.

Лит. см. при ст. Уравнения математической физики .

Характеристика (в технике)

Характери'стикав технике, взаимосвязь между зависимыми и независимыми переменными, определяющими состояние технического объекта (процесса, прибора, устройства, машины, системы), выраженная в виде текста, таблицы, математической формулы, графика и т.п. Например, зависимости тока от электрического напряжения на участке электрической цепи (см. Вольтамперная характеристика ), расхода топлива автомобилем от пройденного им пути и состояния дороги, громкости и качества звучания громкоговорителя от частоты, времени перемагничивания ферритового сердечника от величины намагничивающего поля.

Х. по методике определения подразделяют на детерминированные (статические, динамические) и статистические; по виду аналитические зависимости — на линейные и нелинейные; по назначению — на эксплуатационные, настроечные и т.д. Статической Х. называется зависимость между выходной и входной величинами технической системы в установившихся состояниях. Динамические Х. (частотные, импульсные и др.) отражают реакции изучаемой системы на какие-либо типовые возмущающие воздействия: например, частотная Х. отражает зависимость амплитуды и фазы периодического сигнала на выходе системы от амплитуды и фазы входного гармонического сигнала при изменении только его частоты; импульсная Х. — зависимость изменения во времени сигнала на выходе системы от воздействия входного единичного импульса. В наиболее полной форме динамическая Х. содержатся в динамической математической модели объекта, например в виде дифференциальных уравнений. Статистические Х. (оценки) применяют к объектам, поведение которых во времени меняется случайным образом. К статистическим Х. относятся, например, дисперсия, автокорреляционная функция, спектральная плотность и т.п.

Линейными называются все Х., которые могут быть с заданной точностью аппроксимированы выражением вида у = ax + b , где у — выходное воздействие, x — входное воздействие изучаемой системы, а и b — постоянные коэффициенты. Все остальные Х. — нелинейные; среди них выделяют линеаризуемые Х., которые по частям с известной точностью аппроксимируются указанным выше выражением (см. Линеаризация ).

А. В. Кочеров.

Характеристическая кривая

Характеристи'ческая кривая,одна из важнейших характеристик фотографического материала, выражающая зависимость (при оговорённых условиях экспонирования и проявления) между оптической плотностью полученного на материале почернения фотографического и десятичным логарифмом экспозиции (называемым также количеством освещения), вызвавшей это почернение. См. ст. Сенситометрия ( рис. 1 ) и литература при ней.

Характеристическая функция

Характеристи'ческая фу'нкцияв математике,

1) то же, что собственная функция .

2) Х. ф. множества А (в современной терминологии — индикатор А ) — функция f ( x ), определённая на некотором множестве Е , содержащем множество А , и принимающая значение f ( x ) = 1, если x принадлежит множеству А , и значение f ( x ) = 0, если x не принадлежит ему. 3) В теории вероятностей Х. ф. f X ( t ) случайной величины Х определяется как математическое ожидание величины e itX . Это определение для случайных величин, имеющих плотность вероятности p X ( x ), приводит к формуле

Большая Советская Энциклопедия ХА - изображение 119.

Например, для случайной величины, имеющей нормальное распределение с параметрами а и s, Х. ф. равна

Свойства Х ф каждой случайной величине Х соответствует определённая Х ф - фото 120.

Свойства Х. ф.: каждой случайной величине Х соответствует определённая Х. ф. f X ( t ); распределение вероятностей для Х однозначно определяется по f X ( t ); при сложении независимых случайных величин соответствующие Х. ф. перемножаются; при надлежащем определении понятия «близости» случайным величинам с близкими распределениями соответствуют Х. ф., мало отличающиеся друг от друга, и, обратно, близким Х. ф. соответствуют случайные величины с близкими распределениями. Указанные свойства лежат в основе применений Х. ф., в частности к выводу предельных теорем теории вероятностей. Впервые аппарат, по существу равнозначный Х. ф., был использован П. Лапласом (1812), но вся сила метода Х. ф. была показана А. М. Ляпуновым (1901), получившим с его помощью свою известную теорему.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ХА) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ХА), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x