БСЭ БСЭ - Большая Советская Энциклопедия (ЧИ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ЧИ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ЧИ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.11/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ЧИ) краткое содержание

Большая Советская Энциклопедия (ЧИ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ЧИ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ЧИ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.

Лит.: Энциклопедия элементарной математики, кн. 2 — Алгебра, М.—Л., 1951; Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975.

Численные методы

Чи'сленные ме'тодыв математике, методы приближённого решения математических задач, сводящиеся к выполнению конечного числа элементарных операций над числами. В качестве элементарных операций фигурируют арифметические действия, выполняемые обычно приближённо, а также вспомогательные операции — записи промежуточных результатов, выборки из таблиц и т.п. Числа задаются ограниченным набором цифр в некоторой позиционной системе счисления (десятичной, двоичной и т.п.). Т. о., в Ч. м. числовая прямая заменяется дискретной системой чисел (сеткой); функция непрерывного аргумента заменяется таблицей её значений в сетке (см. Таблицы математические ); операции анализа, действующие над непрерывными функциями, заменяются алгебраическими операциями над значениями функций в сетке. Ч. м. сводят решение математических задач к вычислениям, которые могут быть выполнены как вручную, так и с помощью вычислительных машин. Разработка новых Ч. м. и применение их в ЭВМ привели к возникновению вычислительной математики .

Числитель

Числи'тельдроби m/n , число m , показывающее, из скольких долей 1/ n составлена дробь.

Числительное

Числи'тельное,именная часть речи , общим лексическим значением которой является количество лиц или предметов. Грамматически Ч. характеризуется наличием категории падежа (в языках с развитой морфологией), отчасти рода (в языках, имеющих грамматический род, некоторые Ч. обладают родовыми формами, например в русском языке «два», «две»), отсутствием категории числа. По характеру выражения количественного значения выделяются определённо-количественные Ч. (два, десять и т.п.) и неопределённо-количественные Ч. (много, мало и т.п.). Особую группу образуют собирательные Ч., обозначающие количество как совокупность (двое, трое, пятеро, оба). По структуре различаются простые (два, три, одиннадцать), сложные (пятьдесят, семьдесят) и составные Ч. (тридцать шесть, сто десять). Многие учёные считают прилагательными т. н. порядковые Ч. и слово «один», имеющие различия в числе и синтаксический род. Слова «десяток», «сотня», «тысяча», «миллион» относят к существительным, поскольку они обладают всеми признаками этой части речи. В истории славянских языков некоторые Ч. произошли от других частей речи (например, «пять» — существительное). Ч. следует отличать от других слов с количественным значением.

Лит.: Супрун А. Е., Славянские числительные, Минск, 1969; Виноградов В. В., Русский язык, 2 изд., М., 1972.

В. А. Виноградов.

«Число»

«Число'»,государственная налоговая система, введённая в 50-х гг. 13 в. на территориях, подвластных монгольским ханам. «Ч.» сменило откупную систему налогов с завоёванных монголами земель. При великом хане Менгу (1251—59) «Ч.» было введено в Китае, Средней Азии, Иране, Армении, было распространено на русские земли (Северо-Восточная Русь, Рязанское и Муромское княжества, Новгород Великий). Для этого монгольскими чиновниками были проведены переписи населения, которое делилось на десятки, сотни, тысячи и «тьмы» (10 тыс.). Служители церкви из переписи исключались. Лица, проводившие «Ч.», назывались численниками или писцами. Численники переписывали население по домам. Исчисление населения сопровождалось многочисленными злоупотреблениями и вызывало восстания (восстание в Новгороде Великом в 1257). На Руси деление населения по десятичной системе для уплаты налогов или экстраординарных ордынских сборов сохранялось вплоть до 15 в.

Лит.: Насонов А. Н., Монголы и Русь, М.—Л., 1940; Павлов П. Н., К вопросу о русской дани в Золотую Орду, «Уч. зап. Красноярского гос. пед. института», т. 13. Серия историко-филологическая, в. 2, Красноярск. 1958.

Число (в языкознании)

Число'в языкознании, грамматическая категория, обозначающая в предложении количество участников действия ( субъектов и объектов ) с помощью морфологических средств. Основным противопоставлением в категории Ч. является единственность — множественность. В некоторых языках имеется также двойственное Ч. и реже тройственное. С развитием языка двойственное Ч. может разрушаться и поглощаться множественными Ч., как это было в истории славянских языков (например в старославянском языке различались единственные, множественные и двойственные Ч.: «ты» — «вы» — «ва»). Среди форм и значений многие Ч. различаются множественное дистрибутивное (когда множество мыслится как состоящее из отдельных предметов, например «листы») и множественное собирательное (когда множество мыслится как единая совокупность, например «листья»). Собирательное значение может выражаться формой единственного Ч. («тряпьё», «вороньё»). Формы множественных Ч. могут также обозначать родовое понятие (родовое множественное Ч.), например «в этой местности водятся волки». Употребление формы множественного Ч. в значении единственного Ч. наблюдается в случаях вежливого множественного Ч. («вы» при обращении к одному лицу) и множественные Ч. величия («мы» в речи царствующих особ). Как независимая категория Ч. свойственно существительным и личным местоимениям, другие части речи (глагол, прилагательное, прочие разряды местоимений) получают числовые характеристики по согласованию (синтаксическое Ч.). Согласование по числу обязательно в индоевропейских языках : «он работает» — «они работают», англ. he works — they work. Однако с разрушением морфологии согласование также может исчезать, например в английском языке уже нет согласования по Ч. между прилагательным и существительным (clever child — «умный ребёнок» — clever children — «умные дети»). Способы выражения множественных Ч. различны: аффиксальное Ч. («стол» — «столы», англ. table — tables), супплетивное Ч. («человек» — «люди»), см. Супплетивизм ; ломаное Ч. (араб. radžulun — «мужчина», ridžalun — «мужчины»; изменяется огласовка корня); множественное Ч. с повтором (индонез. оранг — «человек», оранг-оранг — «люди»). В индоевропейских языках форма множественного Ч. обязательна, если существительное имеет при себе количественное слово (десять книг, много книг). В некоторых языках существительное в таких конструкциях употребляется в форме единственного Ч. (венг. könyv — «книга», tiz könyv — «10 книг», sok könyv — «много книг»). Во многих языках Азии и Америки для выражения множественного Ч. существительных в конструкции с числительным используются специальные элементы — классификаторы (нумеративы), различные для разных лексических групп существительных; последние при этом своей формы не меняют (вьетнамский яз. hai con meo — «две кошки», где con — классификатор).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ЧИ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ЧИ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x