БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)
- Название:Большая Советская Энциклопедия (ЭЛ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ) краткое содержание
Большая Советская Энциклопедия (ЭЛ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
От всех других Э. ч. кварки отличаются тем, что в свободном состоянии они пока не наблюдались, хотя имеются свидетельства их существования в связанном состоянии. Одной из причин ненаблюдения кварков может быть их очень большая масса, что препятствует их рождению при энергиях современных ускорителей. Не исключено, однако, что кварки принципиально, в силу специфики их взаимодействия, не могут находиться в свободном состоянии. Существуют доводы теоретического и экспериментального характера в пользу того, что силы, действующие между кварками, не ослабляются с расстоянием. Это означает, что для отделения кварков друг от друга требуется бесконечно большая энергия, или, иначе, возникновение кварков в свободном состоянии невозможно. Невозможность выделить кварки в свободном состоянии делает их совершенно новым типом структурных единиц вещества. Неясно, например, можно ли ставить вопрос о составных частях кварков, если сами кварки нельзя наблюдать в свободном состоянии. Возможно, что в этих условиях части кварков физически вообще не проявляются и поэтому кварки выступают как последняя ступень дробления адронной материи.
Элементарные частицы и квантовая теория поля.Для описания свойств и взаимодействий Э. ч. в современной теории существенное значение имеет понятие физ. поля, которое ставится в соответствие каждой частице. Поле есть специфическая форма материи; оно описывается функцией, задаваемой во всех точках ( х ) пространства-времени и обладающей определёнными трансформационными свойствами по отношению к преобразованиям группы Лоренца ( скаляр, спинор, вектор и т. д.) и групп «внутренних» симметрий (изотопический скаляр, изотопический спинор и т. д.). Электромагнитное поле, обладающее свойствами четырёхмерного вектора А m( х ) (m = 1, 2, 3, 4), — исторически первый пример физического поля. Поля, сопоставляемые с Э. ч., имеют квантовую природу, т. е. их энергия и импульс слагаются из множества отд. порций — квантов, причём энергия E k и импульс p k кванта связаны соотношением специальной теории относительности: E k 2 = p k 2 c 2 + m 2 c 2 . Каждый такой квант и есть Э. ч. с заданной энергией E k, импульсом p k и массой т. Квантами электромагнитного поля являются фотоны, кванты других полей соответствуют всем остальным известным Э. ч. Поле, т. о., есть физическое отражение существования бесконечной совокупности частиц — квантов. Специальный математический аппарат квантовой теории поля позволяет описать рождение и уничтожение частицы в каждой точке х.
Трансформационные свойства поля определяют все квантовые числа Э. ч. Трансформационные свойства по отношению к преобразованиям пространства-времени (группе Лоренца) задают спин частиц. Так, скаляру соответствует спин 0, спинору — спин 1/ 2, вектору — спин 1 и т. д. Существование таких квантовых чисел, как L, В, 1, Y , Ch и для кварков и глюонов «цвет», следует из трансформационных свойств полей по отношению к преобразованиям «внутренних пространств» («зарядового пространства», «изотопического пространства», «унитарного пространства» и т. д.). Существование «цвета» у кварков, в частности, связывается с особым «цветным» унитарным пространством. Введение «внутренних пространств» в аппарате теории — пока чисто формальный приём, который, однако, может служить указанием на то, что размерность физического пространства-времени, отражающаяся в свойствах Э. ч., реально больше четырёх — размерности пространства-времени, характерной для всех макроскопических физических процессов. Масса Э. ч. не связана непосредственно с трансформационными свойствами полей; это дополнительная их характеристика.
Для описания процессов, происходящих с Э. ч., необходимо знать, как различные физические поля связаны друг с другом, т. е. знать динамику полей. В современном аппарате квантовой теории поля сведения о динамике полей заключены в особой величине, выражающейся через поля — лагранжиане (точнее, плотности лагранжиана) L. Знание L позволяет в принципе рассчитывать вероятности переходов от одной совокупности частиц к другой под влиянием различных взаимодействий. Эти вероятности даются т. н. матрицей рассеяния (В. Гейзенберг, 1943), выражающейся через L. Лагранжиан L состоит из лагранжиана L вз , описывающего поведение свободных полей, и лагранжиана взаимодействия L вз, построенного из полей разных частиц и отражающего возможность их взаимопревращений. Знание L взявляется определяющим для описания процессов с Э. ч.
Вид L взоднозначно определяется трансформационными свойствами полей относительной группы Лоренца и требованием инвариантности относительно этой группы (релятивистская инвариантность). В течение длительного времени не были, однако, известны критерии для нахождения L вз(за исключением электромагнитных взаимодействий), а сведения о взаимодействиях Э. ч., полученные из эксперимента, в большинстве случаев не позволяли осуществить надёжный выбор между различными возможностями. В этих условиях широкое распространение получил феноменологический подход к описанию взаимодействий, основанный либо на выборе простейших форм L вз , ведущих к наблюдаемым процессам, либо на прямом изучении характерных свойств элементов матрицы рассеяния. На этом пути был достигнут значительный успех в описании процессов с Э. ч. для различных выделенных областей энергий. Однако многие параметры теории заимствовались из эксперимента, а сам подход не мог претендовать на универсальность.
В период 50—70-х гг. был достигнут значительный прогресс в понимании структуры L вз , который позволил существенно уточнить его форму для сильных и слабых взаимодействий. Решающую роль в этом продвижении сыграло выяснение тесной связи между свойствами симметрии взаимодействий Э. ч. и формой L вз .
Симметрия взаимодействий Э. ч. находит своё отражение в существовании законов сохранения определённых физических величин и, следовательно, в сохранении связанных с ними квантовых чисел Э. ч. (см. Сохранения законы ) . Точная симметрия, имеющая место для всех классов взаимодействий, отвечает наличию у Э. ч. точных квантовых чисел; приближённая симметрия, характерная лишь для некоторых классов взаимодействий (сильных, электромагнитных), приводит к неточным квантовым числам. Отмечавшееся выше различие классов взаимодействий в отношении сохранения квантовых чисел Э. ч. отражает различия в свойствах их симметрии.
Известная форма L вз эл. м.для электромагнитных взаимодействий есть следствие существования очевидной симметрии лагранжиана L относительно умножения комплексных полей j заряженных частиц, входящих в него в комбинациях типа j*j (здесь * означает комплексное сопряжение), на множитель e i a , где a — произвольное действительное число. Эта симметрия, с одной стороны, порождает закон сохранения электрического заряда, с другой стороны, если требовать выполнения симметрии при условии, что a произвольно зависит от точки х пространства-времени, однозначно приводит к лагранжиану взаимодействия:
Читать дальшеИнтервал:
Закладка: