БСЭ - Большая Советская энциклопедия (Пр)
- Название:Большая Советская энциклопедия (Пр)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ - Большая Советская энциклопедия (Пр) краткое содержание
Большая Советская энциклопедия (Пр) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В особых случаях для предохранения поверхности прокатываемого изделия от окисления применяют П. в вакууме или в нейтральной атмосфере.
Известны 3 основных способа П.: продольная, поперечная и винтовая (или косая). При продольной П. ( рис. 1 , а) деформация обрабатываемого изделия происходит между валками, вращающимися в противоположных направлениях и расположенными в большинстве случаев параллельно один другому. Силами трения, возникающими между поверхностью валков и прокатываемым металлом, он втягивается в межвалковое пространство, подвергаясь при этом пластической деформации. Продольная П. имеет значительно большее распространение, чем 2 др. способа. Поперечная П. ( рис. 1 , б) и винтовая (косая) П. ( рис. 1 , в) служат лишь для обработки тел вращения. При поперечной П. металлу придаётся вращательное движение относительно его оси и, следовательно, он обрабатывается в поперечном направлении. При винтовой П. вследствие косого расположения валков металлу, кроме вращательного, придаётся ещё поступательное движение в направлении его оси. Если поступательная скорость прокатываемого металла меньше окружной скорости вследствие его вращения, П. называется также поперечно-винтовой, а если больше — продольно-винтовой. Поперечная П. применяется для обработки зубьев шестерён и некоторых др. деталей, поперечно-винтовая — в производстве цельнокатаных труб, шаров, осей и др. тел вращения ( рис. 2 ). Продольно-винтовая П. находит применение при производстве свёрл.
При продольной П., когда металл проходит между валками, высота его сечения уменьшается, а длина и ширина увеличиваются ( рис. 3 ). Разность высот сечения металла до и после прохода между валками наз. линейным (абсолютным) обжатием: D h = h 0 — h 1.
Отношение этой величины к первоначальной высоте h 0 , выраженное в процентах , называется относительным обжатием; за 1 проход оно обычно составляет 10—60%, а иногда и больше (до 90%). Увеличение длины прокатываемого металла характеризуется коэффициентом вытяжки l (отношение длины металла после его выхода из валков к первоначальной длине). Деформация прокатываемого металла в направлении ширины его сечения называется уширением (разность между шириной сечения до и после П.). Уширение возрастает с повышением обжатия, диаметра валков и коэффициента трения между металлом и поверхностью валков.
Область (объём) между валками, в которой прокатываемый металл непосредственно с ними соприкасается, называется очагом деформации; здесь происходят обжатие металла. Небольшие участки, примыкающие с обеих сторон к очагу деформации, называются внеконтактными зонами деформации; в них металл деформируется лишь в незначительной степени. Очаг деформации состоит из двух основных участков: зоны отставания, в которой средняя скорость металла меньше горизонтальной составляющей окружной скорости валков, и зоны опережения, в которой скорость металла относительно выше. Поэтому скорость выхода прокатываемого металла из валков несколько больше (на 2—6%) их окружной скорости. Граница между этими зонами называется нейтральным сечением. Силы трения, действующие на прокатываемый материал от валков, в зоне отставания направлены по его движению, в зоне опережения — против. Захват металла валками и стабильность протекания процесса обусловливаются силами трения, возникающими на контактной поверхности металла с валками. Для захвата необходимо, чтобы тангенс угла захвата a, т. е. угла между радиусами, проведёнными от оси валков к точкам А и В (см. рис. 3 ), не превысил коэффициента трения: tga £ m. В тех случаях, когда к чистоте поверхности изделий не предъявляют высоких требований, для увеличения угла захвата (а следовательно, и обжатия) поверхности валков придаётся шероховатость путём насечки.
Практически углы захвата находятся в следующих пределах: при горячей П. в гладких валках 20—26°, в насеченных — 27—34°; при холодной П. со смазкой — 3—6°.
Усилие на валки при П. определяется как произведение контактной поверхности на среднее удельное усилие Р = F × p cp (удельное усилие распределено по контактным поверхностям неравномерно: его максимум находится вблизи нейтрального сечения, а по направлению к входу и выходу металла из валков удельное усилие уменьшается). При П. полос прямоугольного сечения контактная поверхность рассчитывается по формуле , где r — радиус валка. При холодной П. полос действительная контактная поверхность больше из-за упругого сжатия валков в местах соприкосновения с прокатываемым металлом. Среднее удельное усилие, называется также нормальным контактным напряжением, зависит от большого числа факторов и может быть выражено формулой p cp = n 1 × n 2 × n 3 ×s, где n 1— коэффициент напряжённого состояния металла, зависящий главным образом от отношения длины дуги захвата, т. е. дуги между точками А и В на окружности сечения валка (см. рис. 3 ), к средней толщине прокатываемой полосы и её ширине, от коэффициента трения и от натяжения прокатываемого металла (натяжение широко применяется при холодной П.); n 2— коэффициент, учитывающий влияние скорости П.: n 3— коэффициент, учитывающий влияние величины наклёпа металла; s — предел текучести (сопротивление деформации) обрабатываемого металла при температуре прокатки. Наибольшее значение имеет коэффициент n 1 , изменяющийся в зависимости от указанных выше факторов в широких пределах (0,8—8); чем больше силы трения на контактных поверхностях и меньше толщина прокатываемого металла, тем выше этот коэффициент. В практических расчётах принимается при горячей П. n 3 = 1, а при холодной n 2 = 1. Для углеродистых сталей при горячей П. среднее удельное усилие находится в пределах 100—300 н / м 2 (10—30 кгс / мм 2 ), при холодной П. 800—1500 н / м 2 (80—150 кгс / мм 2 ). Равнодействующие усилия на валки при наиболее распространённых условиях П. направлены параллельно линии, соединяющей оси валков, т. е. вертикально ( рис. 4 ).
Связь между усилием Р и моментом М, необходимым для вращения каждого валка, определяется формулой М = Р ( а + r), где а — плечо силы Р, находящееся в пределах (0,35—0,5) , а r — радиус круга трения подшипников валков, равный произведению коэффициента трения подшипника на радиус его цапфы. Усилие на валок при П. стальной проволоки, узких стальных полос составляет около 200—1000 кн (20—100 тс ) , а при П. листов шириной 2—2,5 м доходит до 30— 60 Мн (3000—6000 тс ) . Момент, необходимый для вращения обоих валков при П. стальной проволоки и мелких сортовых профилей, составляет 40— 80 кн × м (4—8 тс × м ), а при П. слябов и широких листов достигает 6000—9000 кн×м (600—900 тс × м ).
Интервал:
Закладка: