Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов
- Название:Глоссариум по искусственному интеллекту: 2500 терминов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005686770
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов краткое содержание
Глоссариум по искусственному интеллекту: 2500 терминов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Биграмм (Bigram) – N-грамм, в которой N=2.
Бинарное дерево (Binary tree) – это иерархическая структура данных, в которой каждый узел имеет значение (оно же является в данном случае и ключом) и ссылки на левого и правого потомка. Как правило, первый называется родительским узлом, а дети называются левым и правым наследниками. Двоичное дерево не является упорядоченным ориентированным деревом.
Биннинг (машинное зрение) (Binning) – это процесс объединения заряда от соседних пикселей в CCD матрице во время считывания. Этот процесс выполняется до оцифровки в микросхеме ПЗС (Прибор с обратной Зарядной Связью – CCD матрица) с помощью специализированного управления последовательным и параллельным регистрами. Двумя основными преимуществами биннинга являются улучшенное отношение сигнал / шум (SNR) и возможность увеличивать частоту кадров, хотя и за счет уменьшения пиксельного разрешения.
Биоконсерватизм (Bioconservatism) – это позиция нерешительности и скептицизма в отношении радикальных технологических достижений, особенно тех, которые направлены на изменение или улучшение условий жизни человека. Биоконсерватизм характеризуется верой в то, что технологические тенденции в современном обществе рискуют поставить под угрозу человеческое достоинство, а также противодействием движениям и технологиям, включая трансгуманизм, генетическую модификацию человека, «сильный» искусственный интеллект и технологическую сингулярность. Многие биоконсерваторы также выступают против использования таких технологий, как продление жизни и преимплантационный генетический скрининг.
Биометрия( Biometrics) – это система распознавания людей. по одному или более физическим или поведенческим чертам.
Блок IFU (Instruction Fetch Unit IFU) – это блок предвыборки команд, который выстраивает в единую очередь команды, считываемые из внутренней или внешней памяти системы по шине EIB в соответствии с адресом, выставляемым по шине IAB.
Блок обработки изображений (Vision Processing Unit VPU) – это новый класс специализированных микропроцессоров, являющихся разновидностью ИИ -ускорителей, предназначенных для аппаратного ускорения работы алгоритмов машинного зрения.
Блокчейн (Blockchain) – это алгоритмы и протоколы децентрализованного хранения и обработки транзакций, структурированных в виде последовательности связанных блоков без возможности их последующего изменения.
Большая языковая модель( Large language model) – это неофициальный термин, который обычно означает языковую модель с большим количеством параметров. Некоторые большие языковые модели содержат более 100 миллиардов параметров.
Большие данные (Big data) – это термин для наборов цифровых структурированных и неструктурированных данных, большой размер, скорость увеличения или сложность которых требует значительных вычислительных мощностей для обработки и специальных программных инструментов анализа и представления в виде воспринимаемых человеком результатов.
Бритва Оккама (Occam’s razor) –это принцип принятия решения, сформулированный в XIV веке и франциским монахом Уильямом Оккаму, который. можно сформулировать так: «из двух конкурирующих теорий предпочтение следует отдавать более простому объяснению объекта». Этот принцип также выражается как «Сущности не должны умножаться сверх необходимости». Применительно к машинному обучению, в частности к теории обучения, интуитивную идею Бритвы Оккамы можно сформулировать так – Самое простое решение чаще всего является правильным!
Булевая нейронная сеть (невесомая нейронная сеть) (Boolean neural network)—это многослойная нейронная сеть, состоящая из модуля самоорганизующейся нейронной сети для извлечения признаков, за которым следует модуль нейронной сети и модуль классификации нейронной сети, который прошел самостоятельную подготовку.
Бустинг (Boosting) – это мета-алгоритм ансамбля машинного обучения, предназначенный в первую очередь для уменьшения предвзятости и дисперсии в обучении с учителем, а также семейство алгоритмов машинного обучения, которые превращают слабых учеников в сильных.
Буфер воспроизведения( Replay buffer)—это память, используемая для хранения даных в промежутке между использованием или воспроизведением.
Быстрое кодирование (One-Hot Encoding) – это процесс, с помощью которого категориальные переменные преобразуются в подходящую алгоритмам Машинного обучения (ML) форму. Большая часть предварительной обработки данных -это кодирование в понятный компьютеру язык чисел. Отсюда и название ’encode’, что буквально означает «преобразовать в компьютерный код». Существует множество различных способов кодирования, таких как Ярлычное (Label Encoding) или Быстрое кодирование. [ 20 20 Быстрое кодирование [Электронный ресурс] www.helenkapatsa.ru URL: https://www.helenkapatsa.ru/bystroie-kodirovaniie/ (дата обращения: 07.07.2022)
]
Быстрые и экономичные деревья (Fast-and-frugal trees) – это тип дерева классификации. FFTS можно использовать в качестве инструментов принятия решений, которые действуют как лексикографические классификаторы и, при необходимости, связывают действие (решение) с каждым классом или категорией.
Бытовой искусственный интеллект( Consumer artificial intelligence) – это специализированные программы искусственного интеллекта, внедрённые в бытовые устройства и процессы.
«В»
Валидационные данные( Holdout data)или «выделенные, удержанные» данные, являющиеся частью Датасета (Dataset), предназначенного для тестирования, проверки работоспособности машинного обучения. Тестовые данные относятся к части предварительно размеченных данных, которые хранятся вне наборов данных, используемых для обучения и проверки контролируемых моделей машинного обучения. Их также можно назвать эталонными данными. Первым шагом в обучении с учителем является тестирование различных моделей на тестовых данных и оценка моделей на предмет прогнозируемой производительности. После того, как модель проверена и настроена с помощью набора проверочных данных, она тестируется с набором данных, чтобы выполнить окончательную оценку ее точности, чувствительности, специфичности и согласованности при прогнозировании правильных результатов.
Вариативность данных (Data variability)этот термин описывает, насколько далеко точки данных расположены друг от друга и от центра распределения. Наряду с мерами центральной тенденции меры изменчивости дают вам описательную статистику, которая обобщает ваши данные.
Вариационные ряды (Variation series) – это ряды абсолютных и относительных чисел, которые характеризуют распределение единиц совокупности по качественному (атрибутивному) или количественному признаку. Ряды распределения, построенные по количественному признаку, называются вариационными.
Читать дальшеИнтервал:
Закладка: