Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов
- Название:Глоссариум по искусственному интеллекту: 2500 терминов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005686770
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов краткое содержание
Глоссариум по искусственному интеллекту: 2500 терминов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Класс( Class) – это термин из набора перечисленных целевых значений меток. Например, в модели бинарной классификации, обнаруживающей спам-рассылку, существует два класса – это спам и не спам. В многоклассовой модели классификации, которая идентифицирует породы собак, классами будут пудель, бигль, мопс и так далее.
Класс большинства (Majority class) – этометка в наборе данных с несбалансированным классом. Несбалансированные данные относятся к случаям, когда количество наблюдений в классе распределено неравномерно, и часто существует основной класс -класс большинства, который имеет гораздо больший процент набора данных, и второстепенные классы, в которых недостаточно примеров.
Класс меньшинства( Minority class) – это метка в несбалансированном по классам наборе данных. Например, учитывая набор данных, содержащий 99% ярлыков, не относящихся к спаму, и 1% ярлыков для спама, ярлыки для спама относятся к классу меньшинства в наборе данных с несбалансированным классом. [ 34 34 Класс меньшинства [Электронный ресурс] //docs.microsoft.com URL: https://docs.microsoft.com/ru-ru/azure/open-datasets/dataset-mnist?tabs=azureml-opendatasets (дата обращения: 07.07.2022)
]
Класс Сложности NP (недетерминированное полиномиальное время) (NP) –в теории вычислительной сложности – это класс, используемый для классификации проблем принятия решений. NP – это множество проблем решения, для которых экземпляры проблемы, где ответ «да», имеют доказательства, проверяемые за полиномиальное время с помощью детерминированной машины Тьюринга.
Классификация (Classification).В задачах классификации используется алгоритм для точного распределения тестовых данных по определенным категориям, например, при отделении яблок от апельсинов. Или, в реальном мире, алгоритмы обучения с учителем можно использовать для классификации спама в отдельной папке из вашего почтового ящика. Линейные классификаторы, машины опорных векторов, деревья решений и случайный лес – все это распространенные типы алгоритмов классификации.
Кластеризация (Clustering) – это метод интеллектуального анализа данных для группировки неразмеченных данных на основе их сходства или различия. Например, алгоритмы кластеризации K-средних распределяют сходные точки данных по группам, где значение K представляет размер группировки и степень детализации. Этот метод полезен для сегментации рынка, сжатия изображений и т. д.
Кластеризация временных данных (Temporal data clustering) – разделение неразмеченного набора временных данных на группы или кластеры, где все последовательности, сгруппированные в одном кластере, должны быть согласованными или однородными. Хотя для кластеризации различных типов временных данных были разработаны различные алгоритмы, все они пытаются модифицировать существующие алгоритмы кластеризации для обработки временной информации.
Кластеризация временных данных (Temporal data clustering) – это разделение неразмеченного набора временных данных на группы или кластеры, где все последовательности, сгруппированные в одном кластере, должны быть согласованными или однородными. Хотя для кластеризации различных типов временных данных были разработаны различные алгоритмы, все они пытаются модифицировать существующие алгоритмы кластеризации для обработки временной информации.
Кластеризация на основе центроида (Centroid-based clustering) – это категория алгоритмов кластеризации, которые организуют данные в неиерархические кластеры. Алгоритм k средних (k-means) – это наиболее широко используемый алгоритм кластеризации на основе центроидов, один из алгоритмов машинного обучения, решающий задачу кластеризации.
Кластерный анализ (Cluster analysis) – это тип обучения без учителя, используемый для исследовательского анализа данных для поиска скрытых закономерностей или группировки в данных; кластеры моделируются с мерой сходства, определяемой такими метриками, как евклидово или вероятностное расстояние.
Ключевые точки( Keypoints) – это координаты определенных объектов на изображении. Например, для модели распознавания изображений в задачах компьютерного зрения, такие как оценка позы человека, обнаружение лиц и распознавание эмоций, обычно работают с ключевыми точками на изображении.
К-Медиан( K-median) – это алгоритм кластеризации, вариация k-means метода кластеризации, где для определения центра кластера вместо среднего вычисляется медиана (по каждому из измерений). Алгоритм кластеризации k-medoids похож на алгоритм k-means, но в отличие от него на каждой итерации ищет центры кластеров не как среднее точек, а как медоиды точек. То есть, центр кластера должен обязательно являться одной из его точек. Медоидом для множества точек называется одна из точек множества, сумма расстояний до которой от всех точек множества минимальна. Алгоритм k-medoids, в отличие от k-means, использует для представления центра кластера не центр масс, а представительный объект – один из объектов кластера. Как и в методе k-means, сначала произвольным образом выбирается k представительных объектов. Каждый из оставшихся объектов объединяется в кластер с ближайшим представительным объектом. Затем итеративно для каждого представительного объекта производится его замена произвольным непредставительным объектом пространства данных. Процесс замены продолжается до тех пор, пока улучшается качество результирующих кластеров. Качество кластеризации определяется суммой отклонений между каждым объектом и представительным объектом соответствующего кластера, которую метод стремится минимизировать. То есть, итерации продолжаются до тех пор, пока в каждом кластере его представительный объект не станет медоидом – наиболее близким к центру кластера объектом. [ 35 35 К-Медиан [Электронный ресурс] //lektsia.com URL: https://lektsia.com/6xe906.html (дата обращения: 07.07.2022)
]
Коадаптация (Co-adaptation) – это процесс, когда нейроны предсказывают закономерности в обучающих данных, полагаясь почти исключительно на выходные данные конкретных других нейронов, а не на поведение сети в целом. Регуляризация отсева снижает коадаптацию, поскольку отсев гарантирует, что нейроны не могут полагаться исключительно на определенные другие нейроны.
Когнитивистика, когнитивная наука (Cognitive science) – это междисциплинарное научное направление, объединяющее теорию познания, когнитивную психологию, нейрофизиологию, когнитивную лингвистику, невербальную коммуникацию и теорию искусственного интеллекта.
Когнитивная архитектура (Cognitive architecture) – это гипотеза о фиксированных структурах, обеспечивающих разум, будь то в естественных или искусственных системах, и о том, как они работают вместе – в сочетании со знаниями и навыками, воплощенными в архитектуре. Также, архитектуры, реализованные интеллектуальными агентами, называются когнитивными архитектурами.
Читать дальшеИнтервал:
Закладка: