Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов

Тут можно читать онлайн Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов - бесплатно ознакомительный отрывок. Жанр: Руководства. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Глоссариум по искусственному интеллекту: 2500 терминов
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005686770
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов краткое содержание

Глоссариум по искусственному интеллекту: 2500 терминов - описание и краткое содержание, автор Александр Власкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Дорогой читатель!Твоему вниманию предлагается уникальная книга!Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту.Эта книга уникальна еще и тем, что ее писали эксперты-практики, которые работали вместе над Программой Центра искусственного интеллекта МГТУ им. Н. Э. Баумана, программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» МГТУ им. Н. Э. Баумана в 2021—2022 годах.

Глоссариум по искусственному интеллекту: 2500 терминов - читать онлайн бесплатно ознакомительный отрывок

Глоссариум по искусственному интеллекту: 2500 терминов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Власкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Многозадачное обучение (Multitask learning) – это общий подход, при котором модели обучаются выполнению различных задач на одних и тех же параметрах. В нейронных сетях этого можно легко добиться, связав веса разных слоев. Идея многозадачного обучения была впервые предложена Ричем Каруаной в 1993 году и применялась для прогнозирования пневмонии, а также для создания системы следования дороге на беспилотных устройствах (Каруана, 1998). Фактически при многозадачном обучении модель стимулируют к созданию внутри себя такого представления данных, которые позволяет выполнить сразу много задач. Это особенно полезно для обучения общим низкоуровневым представлениям, на базе которых потом происходит «концентрация внимания» модели или в условиях ограниченного количества обучающих данных. Многозадачное обучение нейросетей для обработки естественного языка было впервые применено в 2008 году Коллобером и Уэстоном (Collobert & Weston, 2008) [ 57 57 Многозадачное обучение [Электронный ресурс] // https://ai-news.ru. URL: https://ai-news.ru/2019/07/8_glavnyh_proryvov_v_nejrosetevom_nlp.html (дата обращения: 04.08.2022) ].

Многоклассовая логистическая регрессия (также называемая полиномиальной логистической регрессией) ( Multi-class logistic regression) – это алгоритм бинарной логистической регрессии (два класса) расширенной на многоклассовые случаи. В мультиклассовой логистической регрессии классификатор можно использовать для прогнозирования нескольких результатов.

Многомерная система (Multidimensional system)или м-Д система – это система, в которой существует не только одна независимая переменная (как время), а несколько независимых переменных.

Многослойная нейронная сеть (многослойный персептрон) (Multilayer neural network) –это сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоёв связи между нейронами отсутствуют. Слои нумеруются слева направо. Первый слой называют входным или распределительным. Его нейроны (которые также называют входными) принимают элементы вектора признаков и распределяют их по нейронам следующего слоя. При этом обработка данных во входном слое не производится. Последний слой называется выходным. На выходах его нейронов (они называются выходными) формируется результат работы сети – элементы выходного вектора. Между входным и выходным слоем располагаются один или несколько промежуточных или скрытых слоёв. Скрытыми они называются по тому, что их входы и выходы неизвестны для внешних по отношению к нейронной сети программам и пользователю. [ 58 58 Многослойная нейронная сеть [Электронный ресурс] //wiki.loginom.ru URL: https://wiki.loginom.ru/articles/multilayer-neural-net.html (дата обращения: 07.07.2022) ]

Многослойный персептрон (МЛП, Multilayer Perceptrons, MLP)) – это одна из наиболее распространенных моделей нейронных сетей, разновидность искусственной нейронной сети используемых в области глубокого обучения и состоящей как минимум из трех слоев узлов: входного слоя, скрытого слоя и выходного слоя. МЛП, которую часто называют «ванильной» нейронной сетью, проще, чем сложные современные модели.

Мобильное здравоохранение (Mobile healthcare, mHealth) – это ряд мобильных технологий, систем, сервисов и приложений, установленных на мобильных устройствах и использующихся в медицинских целях и для обеспечения здорового образа жизни человека и мотивации людей к здоровому образу жизни и формированию новой «цифровой» культуры здоровья.

Модальность (Modality) – этофункционально-семантическая категория, выражающая отношение высказывания к действительности, способ существования объекта или протекания явления либо способ понимания, суждения об объекте или явлении способ организации многооконного интерфейса программы, при котором одно из окон монопольно владеет фокусом пользовательского внимания способ образования ладов (модусов) на основе общего звукоряда путём перемещения. Категория данных высокого уровня. [ 59 59 Модальность [Электронный ресурс] //vslovarike.ru URL: https://vslovarike.ru/ (дата обращения: 07.07.2022) ]

Модель (Model)применительно к машинному обучению – это файл, обученный распознавать определенные типы шаблонов. Вы обучаете модель на наборе данных, предоставляя ей алгоритм, который она может использовать для рассуждений и извлечения уроков из этих данных. После того, как вы обучили модель, вы можете использовать ее для анализа данных, которые она раньше не видела, и делать прогнозы относительно этих данных.

Модель LaMDA( LaMDA) – это языковая модель для диалоговых приложений, новая технология Google для обработки диалоговой речи. модель LaMDA разработана Google как открытое приложение для разговорного ИИ. Она берет на себя роль человека или аватара во время разговоров с пользователями.

Модель вероятностной регрессии( Probabilistic regression model) – это модель регрессии, в которой используются не только веса для каждого признака, но и неопределенность этих весов. Модель вероятностной регрессии генерирует прогноз и неопределенность этого прогноза.

Модель классификации (Classification model) – это тип модели машинного обучения для различения двух или более дискретных классов. Например, модель классификации обработки естественного языка может определить, было ли входное предложение французским, испанским или итальянским.

Модель мешка слов (Bag-of-words model) – это упрощающее представление, используемое при обработке естественного языка и поиске информации (IR). В этой модели текст (например, предложение или документ) представляется в виде набора (мультимножества) его слов без учета грамматики и даже порядка слов, но с сохранением множественности. Модель мешка слов также использовалась для компьютерного зрения. Модель мешка слов обычно используется в методах классификации документов, где (частота) появления каждого слова используется в качестве признака для обучения классификатора.

Модель мешка слов в компьютерном зрении (Bag-of-words model in computer vision) – в компьютерном зрении эту модель (модель BoW) можно применять для классификации изображений, рассматривая признаки изображения как слова. В классификации документов набор слов представляет собой разреженный вектор количества встречаемости слов; то есть разреженная гистограмма по словарному запасу. В компьютерном зрении набор визуальных слов представляет собой вектор количества встречаемости словаря локальных признаков изображения.

Модель от последовательности к последовательности (Sequence-to-sequence model, seq2seq).Самая популярная задача на последовательность – это перевод: обычно с одного естественного языка на другой. За последние пару лет коммерческие системы стали на удивление хороши в машинном переводе – взгляните, например, на Google Translate, Yandex Translate, DeepL Translator, Bing Microsoft Translator. Сегодня мы узнаем об основной части этих систем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Власкин читать все книги автора по порядку

Александр Власкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Глоссариум по искусственному интеллекту: 2500 терминов отзывы


Отзывы читателей о книге Глоссариум по искусственному интеллекту: 2500 терминов, автор: Александр Власкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x