Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов
- Название:Глоссариум по искусственному интеллекту: 2500 терминов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005686770
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Власкин - Глоссариум по искусственному интеллекту: 2500 терминов краткое содержание
Глоссариум по искусственному интеллекту: 2500 терминов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Модель последовательности( Sequence model) – это модель, входы которой имеют последовательную зависимость. Например, предсказание следующего видео, просмотренного на основе последовательности ранее просмотренных видео.
Модель регрессии( Regression model) – это тип модели, которая выводит непрерывные значения (обычно с плавающей запятой).
Модель убеждений, желаний и намерений (Belief-desire-intention software model) – это модель программирования интеллектуальных агентов. Образно модель описывает убеждения, желания и намерения каждого агента, однако непосредственно применительно к конкретной задаче агентного программирования. По сути, модель предоставляет механизм позволяющий разделить процесс выбора агентом плана (из набора планов или внешнего источника генерации планов) от процесса исполнения текущего плана, выбранного ранее. Как следствие, агенты, повинующиеся данной модели способны уравновешивать время, затрачиваемое ими на выбор и отсеивание будущих планов со временем исполнения выбранных планов. Процесс непосредственного синтеза планов (планирование) в модели не описывается и остаётся на откуп программного дизайнера или программиста.
Модель Generative Pre-trained Transformer( Generative Pre-trained Transformer) – это семейство больших языковых моделей на основе Transformer, разработанных OpenAI. Варианты GPT могут применяться к нескольким модальностям, в том числе: • генерация изображений (ImageGPT) • преобразование текста в изображение (DALL-E).
Модули векторной обработки (Intelligent Engines) – это поле выполнения операций умножения с плавающей запятой с минимальными задержками (DSP Engines) и специализированное поле/модуль AI Engines c высокой пропускной способностью, а также минимальными задержкам на выполнение операций и оптимальным уровнем энергопотребления, предназначенное для решения задач в области реализации искусственного интеллекта (AI inference) и цифровой обработки сигналов.
Модус поненс (Modus ponens) –это правило логики, которое позволяет вам применять операторы «если-то» для получения части «тогда» всякий раз, когда часть «если» удовлетворяется.
Модус толленс (Modus Tollens) –это форма дедуктивного аргумента и правило логики, используемое для выводов из аргументов и наборов аргументов. Modus tollens утверждает, что если P истинно, то Q также истинно. Если P ложно, следовательно, Q также ложно.
Мозговая технология (также самообучающаяся система ноу-хау) (Brain technology) – это технология, в которой используются последние открытия в области неврологии. Термин был впервые введен Лабораторией искусственного интеллекта в Цюрихе, Швейцария, в контексте проекта ROBOY. Brain Technology может использоваться в роботах, системах управления ноу-хау и любых других приложениях с возможностями самообучения. В частности, приложения Brain Technology позволяют визуализировать базовую архитектуру обучения, которую часто называют «картами ноу-хау».
Мозгоподобные вычисления( Brain-inspired computing) – это вычисления на мозгоподобных структурах, вычисления, использующие принципы работы мозга.
Мультиагентные системы (Multi-agent system MAS) – этоосновная область исследований современного искусственного интеллекта. Многоагентная система состоит из нескольких агентов, принимающих решения, которые взаимодействуют в общей среде для достижения общих или противоречивых целей. С помощью методологий MAS можно решать широкий спектр приложений, включая автономное вождение, фабрики с несколькими роботами, автоматическую торговлю, коммерческие игры, автоматизированное обучение и т. д.
Мультиголовное самовнимание (Multi-head self-attention) –является ключевым компонентом Transformer- современной архитектуры для нейронного машинного перевода. Механизм самовнимания в настоящее время встречается в самых различных архитектурах и задачах (перевод, генерация текста, аннотация изображений и т.д.).
Мульти-классовая классификация (Multi-class classification) –это классификация, включающая более двух классов, например, классификация серии фотографий породы собак, которые могут быть мопсом, бульдогом или мастифом. Мультиклассовая классификация предполагает, что каждый образец относится к одному классу, например, собака может быть либо мопсом, либо бульдогом, но не тем и другим одновременно.
Мультимодальная модель (Multimodal model) –это текст и другие типы ввода (такие как графика, изображения и т. д.) и более специфичные для конкретной задачи. В мультимодальных средах модель преобразователей используется для создания прогнозов путем слияния текста и изображения. Различные входные данные объединяются, и поверх позиционных вложений добавляется встраивание сегмента, чтобы сообщить модели, какая часть входного вектора относится к тексту, а какая к изображению. Такая классификация возможна с предварительно обученной моделью [ 60 60 Мультимодальная модель [Электронный ресурс] www.projectpro.io URL: https://www.projectpro.io/recipes/what-are-multimodal-models-transformers (дата обращения: 07.07.2022)
].
Мультимодальное обучение (Multi-Modal Learning) –это подраздел машинного обучения, когда данные поступают из разных источников. Модусы – это, по сути, каналы информации. Эти данные из нескольких источников семантически коррелированы и иногда предоставляют дополнительную информацию друг другу, таким образом отражая шаблоны, которые не видны при работе с отдельными модальностями сами по себе.
Мультимодальные приложения (Multimodal application) –это объединение различных модальностей или типов информации для повышения производительности в области глубокого обучения. Чтобы искусственный интеллект смог добиться прогресса в понимании окружающего мира, он должен уметь вместе интерпретировать такие мультимодальные сигналы. Мультимодальное глубокое обучение опирается на множество модусов, каждый из которых вносит свой вклад в значение.
Мульти-опыт (Multi-experience) – это часть долгосрочного перехода от индивидуальных компьютеров, которые мы используем сегодня, к многопользовательским, мультисенсорным и многолокационным системам, процесс замены людей, понимающих технологии, на технологии, понимающие людей.
Мусор на входе – мусор на выходе( Garbage In, Garbage Out) – это принцип в информатике, означающий, что при неверных входящих данных будут получены неверные результаты, даже если сам по себе алгоритм правилен.
Мутация (Mutation) – это тип тестирования программного обеспечения, при котором определенные операторы исходного кода изменяются/мутируют, чтобы проверить, могут ли тестовые примеры найти ошибки в исходном коде. Целью мутационного тестирования является обеспечение качества тестовых примеров с точки зрения надежности, чтобы они не давали сбой мутировавшему исходному коду. Изменения, внесенные в мутантную программу, должны быть очень небольшими, чтобы они не влияли на общую цель программы. Мутационное тестирование также называется стратегией тестирования на основе ошибок, поскольку оно включает создание ошибки в программе и представляет собой тип тестирования белого ящика, который в основном используется для модульного тестирования.
Читать дальшеИнтервал:
Закладка: